• Title/Summary/Keyword: 대기대순환 모델

Search Result 22, Processing Time 0.017 seconds

Estimating distribution changes of ten coastal plant species on the Korean Peninsula (한반도 해안식물 10종의 분포 변화 추정)

  • PARK, Jong-Soo;CHOI, Byoung-Hee
    • Korean Journal of Plant Taxonomy
    • /
    • v.50 no.2
    • /
    • pp.154-165
    • /
    • 2020
  • Coastal regions are experiencing habitat changes due to coastal development and global warming. To estimate the future distribution of coastal plants on the Korean Peninsula due to climate change, the potential distribution of ten species of coastal plants was analyzed using the MaxEnt program. The study covered the eastern, western, and southern coastal areas of the Korean Peninsula. We used the distributional data of coastal plants of the East Asian region and the 19 climate variables of WorldClim 2.0. The future potential distribution was estimated using future climate variables projected from three general circulation models (CCSM4, MIROC-ESM, and MPI-ESM-LR), four representative concentration pathways (2.5, 4.5, 6.0, and 8.5), and two time periods (2050 and 2070). The annual mean temperature influenced the estimation of the potential distribution the most. Under predicted future distribution scenarios, Lathyrus japonicus, Glehnia littoralis, Calystegia soldanella, Vitex rotundifolia, Scutellaria strigillosa, Linaria japonica, and Ixeris repens are expected to show contracted distributions, whereas the distribution of Cnidium japonicum is expected to expand. Two species, Salsola komarovii and Carex kobomugi, are predicted to show similar distributions in the future compared to those in the present. The average potential distribution in the future suggests that the effects of climate change will be greater in the west and the south coastal regions than in the east coastal region. These results will be useful baseline data to establish a conservation strategy for coastal plants.

Analysis of Wind Vorticity and Divergence in the High-latitude Lower Thermosphere: Dependence on the Interplanetary Magnetic Field (IMF) (고위도 하부 열권 바람의 소용돌이도와 발산 분석: 행성간 자기장(IMF)에 대한 의존도)

  • Kwak, Young-Sil;Lee, Jae-Jin;Ahn, Byung-Ho;Hwang, Jung-A;Kim, Khan-Hyuk;Cho, Kyung-Seok
    • Journal of Astronomy and Space Sciences
    • /
    • v.25 no.4
    • /
    • pp.405-414
    • /
    • 2008
  • To better understand the physical processes that control the high-latitude lower thermospheric dynamics, we analyze the divergence and vorticity of the high-latitude neutral wind field in the lower thermosphere during the southern summertime for different IMF conditions. For this study the National Center for Atmospheric Research Thermosphere-Ionosphere Electrodynamics General Circulation Model (NCAR-TIEG CM) is used. The analysis of the large-scale vorticity and divergence provides basic understanding flow configurations to help elucidate the momentum sources that ulti-mately determine the total wind field in the lower polar thermosphere and provides insight into the relative strengths of the different sources of momentum responsible for driving winds. The mean neutral wind pattern in the high-latitude lower thermosphere is dominated by rotational flow, imparted primarily through the ion drag force, rather than by divergent flow, imparted primarily through Joule and solar heating. The difference vorticity, obtained by subtracting values with zero IMF from those with non-zero IMF, in the high-latitude lower thermosphere is much larger than the difference divergence for all IMF conditions, indicating that a larger response of the thermospheric wind system to enhancement in the momentum input generating the rotational motion with elevated IMF than the corresponding energy input generating the divergent motion. the difference vorticity in the high-latitude lower thermosphere depends on the direction of the IMF. The difference vorticity for negative and positive $B_y$ shows positive and negative, respectively, at higher magnetic latitudes than $-70^{\circ}$. For negative $B_z$, the difference vorticities have positive in the dusk sector and negative in the dawn sector. The difference vorticities for positive $B_z$ have opposite sign. Negative IMF $B_z$ has a stronger effect on the vorticity than does positive $B_z$.