인문학 수업에서 교수와 학생간에 상호작용은 매우 중요하다. 그러나 많은 학생들이 수강하는 대규모 집합 교육의 경우, 수많은 학생들과 교수가 의견을 교환하기는 어렵다. 본 논문에서는 안드로이드 폰의 앱(app)을 개발하여, 대규모 집합 교육에서 발생할 수 있는 상호작용의 제한성을 극복하고자한다. 본 논문에서 개발한 앱은 스마트폰의 정보처리 기능과 무선 통신 기능을 활용하였다. 대규모 집합 교육의 보조 기구로 사용하여 대규모 집합 교육의 교육 효과를 높이는데 목적이 있다.
프로그램 소스코드는 텍스트를 기반으로 하는 정보이며 동시에 논리 구조를 포함하고 있는 복잡한 구문의 집합체이다. 특히 소스코드의 규모가 수만 라인에 이르는 경우 구조적, 논리적인 복잡함으로 인해 기존의 빅데이터 시각화 기법이 잘 적용되기 힘들다는 문제가 발생한다. 본 논문은 소스코드가 갖는 구조적인 특징을 시각화하는데 있어 필요한 절차를 제안한다. 이를 위해 본 논문은 파싱 과정을 거쳐 생성된 추상구문트리를 대상으로 프로그램의 구조특징을 표현하기 위한 자료형의 정의, 함수간 호출관계를 표현한다. 이들 정보를 바탕으로 제어 정보를 네트워크 형태로 시각화함으로써 모듈의 구조적인 특징을 개괄적으로 살펴볼 수 있는 방법을 제시한다. 본 연구의 결과는 대규모 소프트웨어의 구조적 특징을 이해하거나 변경을 관리하는 효과적인 수단으로 활용할 수 있다.
오늘날, 대량의 데이터를 수집, 저장 및 관리하는 데이터베이스 기술의 진보를 기반으로, 의료, 과학, 교육, 비즈니스 등 다양한 분야에서 발생되는 대규모 데이터를 축적하게 되었다. 다양한 분야에서 축적된 대량의 데이터에 내재된 유용한 정보를 수월하게 추출하여 분석하기 위해 널리 사용되고 있는 형식개념분석기법은, 주어진 데이터로부터 정보의 최소단위로써 개념들을 추출하고, 개념들 사이의 관계를 토대로 개념계층구조를 구축하기 위한 정형화된 데이터마이닝 기법을 제공하고 있다. 본 논문에서는, 주어진 퍼지 데이터에 잠재된 유용한 정보를 추출하기 위해, 퍼지 집합 이론을 형식개념분석기법에 접목한 퍼지개념분석기법과 이를 지원하기 위해 본 연구에서 개발된 FFCA-Wizard를 소개한다. 또한, FFCA-Wizard를 사용하여 실세계 데이터를 대상으로 퍼지개념분석을 실시한 실험 결과를 보고한다.
Convolutional Neural Network (ConvNet)은 시각적 특징의 계층 구조를 분석하고 학습할 수 있는 대표적인 심층 신경망이다. 첫 번째 신경망 모델인 Neocognitron은 80 년대에 처음 소개되었다. 당시 신경망은 대규모 데이터 집합과 계산 능력이 부족하여 학계와 산업계에서 널리 사용되지 않았다. 그러나 2012년 Krizhevsky는 ImageNet ILSVRC (Large Scale Visual Recognition Challenge) 에서 심층 신경망을 사용하여 시각적 인식 문제를 획기적으로 해결하였고 그로 인해 신경망에 대한 사람들의 관심을 다시 불러 일으켰다. 이미지넷 첼린지에서 제공하는 다양한 이미지 데이터와 병렬 컴퓨팅 하드웨어 (GPU)의 발전이 Krizhevsky의 승리의 주요 요인이었다. 그러므로 최근의 딥 컨볼루션 신경망의 성공을 병렬계산을 위한 GPU의 출현과 더불어 ImageNet과 같은 대규모 이미지 데이터의 가용성으로 정의 할 수 있다. 그러나 이러한 요소는 많은 도메인에서 병목 현상이 될 수 있다. 대부분의 도메인에서 ConvNet을 교육하기 위해 대규모 데이터를 수집하려면 많은 노력이 필요하다. 대규모 데이터를 보유하고 있어도 처음부터 ConvNet을 교육하려면 많은 자원과 시간이 소요된다. 이와 같은 문제점은 전이 학습을 사용하면 해결할 수 있다. 전이 학습은 지식을 원본 도메인에서 새 도메인으로 전이하는 방법이다. 전이학습에는 주요한 두 가지 케이스가 있다. 첫 번째는 고정된 특징점 추출기로서의 ConvNet이고, 두번째는 새 데이터에서 ConvNet을 fine-tuning 하는 것이다. 첫 번째 경우, 사전 훈련 된 ConvNet (예: ImageNet)을 사용하여 ConvNet을 통해 이미지의 피드포워드 활성화를 계산하고 특정 레이어에서 활성화 특징점을 추출한다. 두 번째 경우에는 새 데이터에서 ConvNet 분류기를 교체하고 재교육을 한 후에 사전 훈련된 네트워크의 가중치를 백프로퍼게이션으로 fine-tuning 한다. 이 논문에서는 고정된 특징점 추출기를 여러 개의 ConvNet 레이어를 사용하는 것에 중점을 두었다. 그러나 여러 ConvNet 레이어에서 직접 추출된 차원적 복잡성을 가진 특징점을 적용하는 것은 여전히 어려운 문제이다. 우리는 여러 ConvNet 레이어에서 추출한 특징점이 이미지의 다른 특성을 처리한다는 것을 발견했다. 즉, 여러 ConvNet 레이어의 최적의 조합을 찾으면 더 나은 특징점을 얻을 수 있다. 위의 발견을 토대로 이 논문에서는 단일 ConvNet 계층의 특징점 대신에 전이 학습을 위해 여러 ConvNet 계층의 특징점을 사용하도록 제안한다. 본 논문에서 제안하는 방법은 크게 세단계로 이루어져 있다. 먼저 이미지 데이터셋의 이미지를 ConvNet의 입력으로 넣으면 해당 이미지가 사전 훈련된 AlexNet으로 피드포워드 되고 3개의 fully-connected 레이어의 활성화 틀징점이 추출된다. 둘째, 3개의 ConvNet 레이어의 활성화 특징점을 연결하여 여러 개의 ConvNet 레이어의 특징점을 얻는다. 레이어의 활성화 특징점을 연결을 하는 이유는 더 많은 이미지 정보를 얻기 위해서이다. 동일한 이미지를 사용한 3개의 fully-connected 레이어의 특징점이 연결되면 결과 이미지의 특징점의 차원은 4096 + 4096 + 1000이 된다. 그러나 여러 ConvNet 레이어에서 추출 된 특징점은 동일한 ConvNet에서 추출되므로 특징점이 중복되거나 노이즈를 갖는다. 따라서 세 번째 단계로 PCA (Principal Component Analysis)를 사용하여 교육 단계 전에 주요 특징점을 선택한다. 뚜렷한 특징이 얻어지면, 분류기는 이미지를 보다 정확하게 분류 할 수 있고, 전이 학습의 성능을 향상시킬 수 있다. 제안된 방법을 평가하기 위해 특징점 선택 및 차원축소를 위해 PCA를 사용하여 여러 ConvNet 레이어의 특징점과 단일 ConvNet 레이어의 특징점을 비교하고 3개의 표준 데이터 (Caltech-256, VOC07 및 SUN397)로 실험을 수행했다. 실험결과 제안된 방법은 Caltech-256 데이터의 FC7 레이어로 73.9 %의 정확도를 얻었을 때와 비교하여 75.6 %의 정확도를 보였고 VOC07 데이터의 FC8 레이어로 얻은 69.2 %의 정확도와 비교하여 73.1 %의 정확도를 보였으며 SUN397 데이터의 FC7 레이어로 48.7%의 정확도를 얻었을 때와 비교하여 52.2%의 정확도를 보였다. 본 논문에 제안된 방법은 Caltech-256, VOC07 및 SUN397 데이터에서 각각 기존에 제안된 방법과 비교하여 2.8 %, 2.1 % 및 3.1 %의 성능 향상을 보였다.
최근 병원 및 은행 등의 대규모 데이터베이스에 접근하는 사용자의 요구 사항이 다양해짐에 따라 데이터베이스 보안에 대한 중요성도 커졌다. 기존의 접근 제어 정책을 이용한 데이터베이스 보안 모델들이 존재하지만 이들은 복잡하고, 다양한 유형의 접근제어를 원하는 사용자의 보안 요구를 충족시키지 못한다. 본 논문에서는 데이터베이스를 접근하는 각 사용자별로 다양한 크기의 데이터 그룹에 대한 접근 제어론 제공하며, 임의의 정보에 대한 사용자의 접근 권한의 변화를 유연하게 수용하는 데이터베이스 보안 시스템을 제안하였다. 이를 위해 다양한 크기의 데이터 그룹을 테이블, 속성, 레코드 키에 의해 정의하였고, 사용자의 접근 권한은 보안 등급, 역할과 보안 정책들에 의해 정의하였다. 제안하는 시스템은 두 단계로 수행된다. 제 1단계는 수정된 강제적 접근 제어(Mandatory Access Control: MAC)정책과 역할 기반 접근 제어(Role-Based Access Control: RBAC)정책에 의해 수행된다. 이 단계에서는 사용자 및 데이터의 보안 등급과 역할에 의해 접근이 제어되며, 모든 형태의 접근 모드에 대한 제어가 이루어진다. 제 2단계에서는 수정된 임의적 접근 제어(Discretionary Access Control: RBAC)정책에 의해 수행되며, 1단계 수행결과가 다양한 크기의 데이터 항목에 대한 read 모드 접근제어 정책에 따라 필터링되어 사용자에게 제공한다. 이를 위해 사용자 그룹은 보안 등급에 의한 그룹, 역할에 의한 그룹, 사용자 부분집합으로 이루어진 특정 사용자 그룹으로 정의하였고 Block(s, d, r) 정책을 정의하여 특정 사용자 5가 특정 데이터 그룹 d에 'read' 모드, r로 접근할 수 없도록 하였다. 제안한 시스템은 사용자별 데이터에 대한 접근 제어가 복잡하게 요구되는 특정 유전체 연구 센터의 정보에 대한 보안 관리를 위해 사용하였다.안성, 동진벼는 안성, 서산 및 화순, 삼강벼는 안성, 서산, 화순 및 계화도 그리고 용문벼는 안성과 충주였다. 유지보수성을 증대할 수 있는 잇점을 가진다.역되어 MC-3에서 수행된다.위해 가상현실 기술을 이용한 컴퓨터 지원 교육훈력 시스템(CATS ; Computer Assister Training System)을 개발 중이며 일부 개발부분을 소개하였다.하며, 제 2선적제도의 발달과 해운경영의 국제성에 맞추어 근해해역에서 활동하는 우리나라의 선박에대해서 부분적으로 선박의 국적을 점차 개방시켜 나가는 정책을 검토해야 할 단계라는 것이다. 이러한 점에 있어서 지난 30여년간 외항해운부문에 중점을 두어온 우리나라의 해운정책은 이제 근해해운정책의 개발에도 관심을 기울여야 하는 전환점에 있다고 할 수있다.의 목적과 지식)보다 미학적 경험에 주는 영향이 큰 것으로 나타났으며, 모든 사람들에게 비슷한 미학적 경험을 발생시키는 것 이 밝혀졌다. 다시 말하면 모든 사람들은 그들의 문화적인 국적과 사회적 인 직업의 차이, 목적의 차이, 또한 환경의 의미의 차이에 상관없이 아름다 운 경관(High-beauty landscape)을 주거지나 나들이 장소로서 선호했으며, 아름답다고 평가했다. 반면에, 사람들이 갖고 있는 문화의 차이, 직업의 차 이, 목적의 차이, 그리고 환경의 의미의 차이에 따라 경관의 미학적 평가가 달라진 것으로 나타났다.corner$적 의도에 의한 경관구성의 일면을 확인할수 있지만 엄밀히 생각하여 보면 이러한 예의 경우도 최락의 총체적인 외형은 마찬가지로 $\ulcorner$순응$\lrcorner$의 범위를 벗어나지 않는다. 그렇기 때문에도 $\ulcorner$순응$\lrcorner$과 $\ulcorner$표현$\lrcorner$의 성격과
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.