• 제목/요약/키워드: 단-단계 물체 탐지

검색결과 2건 처리시간 0.015초

단-단계 물체 탐지기 학습을 위한 고난도 예들의 온라인 마이닝 (Online Hard Example Mining for Training One-Stage Object Detectors)

  • 김인철
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제7권5호
    • /
    • pp.195-204
    • /
    • 2018
  • 본 논문에서는 심층 합성 곱 신경망 모델 기반의 단-단계 물체 탐지기들의 탐지 성능을 향상시킬 수 있는 새로운 손실 함수와 온라인 고난도 예 마이닝 방식을 제안한다. 본 논문에서 제안하는 손실 함수와 온라인 고난도 예 마이닝 방식은 물체와 배경 간의 학습 데이터 불균형 문제를 해결할 뿐만 아니라, 각 물체의 위치 추정 정확도를 더 개선시킬 수 있다. 따라서 물체 탐지 속도가 빠른 단-단계 물체 탐지기들에 이-단계 물체 탐지기들과 비슷하거나 더 우수한 탐지 성능을 제공할 수 있다. PASCAL VOC 2007 벤치마크 데이터 집합을 이용한 다양한 실험들을 통해, 본 논문에서 제안하는 손실 함수와 온라인 고난도 예 마이닝 방식이 단-단계 물체 탐지기들의 성능 개선에 도움이 된다는 것을 입증해 보인다.

위성영상의 방사적 특성을 고려한 구름 탐지 방법 개발 (Development of Cloud Detection Method Considering Radiometric Characteristics of Satellite Imagery)

  • 서원우;강홍기;윤완상;임평채;이수암;김태정
    • 대한원격탐사학회지
    • /
    • 제39권6_1호
    • /
    • pp.1211-1224
    • /
    • 2023
  • 구름은 광학위성을 이용한 국토 관측 및 재난 대응, 변화 탐지 등 지표의 현상을 관측하는데 있어 많은 어려운 문제를 야기한다. 구름의 존재는 영상 처리 단계 뿐만 아니라 최종적으로는 데이터의 품질에 영향을 미치므로 이를 반드시 식별하고 제거하는 과정이 필요하다. 따라서 본 연구에서는 위성영상 내 구름의 분광패턴에 가장 근접한 화소를 탐색 및 추출해 최적의 임계값을 선정하고 임계값을 바탕으로 구름 산출물을 제작하는 일련의 과정을 자동으로 수행하는 새로운 구름 탐지 기법을 개발하고자 하였다. 구름 탐지 기법은 크게 세 단계로 구성된다. 첫 번째 단계에서는 Digital Number (DN) 단위 영상을 대기상층 반사율 단위로 변환하는 과정을 수행한다. 두 번째 단계에서는 대기상층 반사율 영상을 이용하여 Hue-Value-Saturation (HSV) 변환 및 삼각형 임계 처리, 최대우도 분류 등의 전처리를 적용하고 각 영상별로 초기 구름 마스크 생성을 위한 임계값을 결정한다. 세번째 후처리 단계에서는 생성된 초기 구름 마스크에 포함된 노이즈를 제거하고 구름 경계 및 내부를 개선한다. 구름 탐지를 위한 실험 자료로 구름의 공간적, 계절적 분포의 다양성을 보여주는 4~11월 시기에 한반도 지역에서 촬영된 국토위성 L2G 영상을 사용하였다. 제안 방법의 성능을 검증하기 위해 단일 임계화 방법으로 생성된 결과를 비교하였다. 실험 결과, 제안 방법은 기존 방법과 비교하여 전처리 과정을 통해 각 영상의 방사학적 특성을 고려할 수 있어 보다 정확하게 구름을 검출할 수 있었다. 또한, 구름 개체를 제외한 나머지 밝은 물체(판넬식 지붕, 콘크리트 도로, 모래 등)의 영향을 최소화하는 결과를 보여주었다. 제안 방법은 기존 방법 대비 F1-score 기준으로 30% 이상의 개선된 결과를 보여주었으나 눈이 포함된 특정 영상에서 한계점이 있었다.