• Title/Summary/Keyword: 단조시뮬레이션

Search Result 65, Processing Time 0.025 seconds

A Study on the Improvement of the Forming Limit in the Forged Hige Product (힌지 부품의 단조공정에서 성형한계 개선에 관한 연구)

  • 김영호;박재훈;손경호
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.240-243
    • /
    • 1995
  • This paper describes the process design and forming limit of the forged hinge produec with the axial protrusion on the sheet metal. Process design is consisted of preform and forging process. In this case, the forged hinge product can be formed in a single workpiece without assembling another axial part to it. Process design of the forged hinge product is analyzed by the commercial FEM program. It is known that process design with perform process, shown by the FEM simulaion, can bring the forming limit of the forged hinge product to a great expansion.

  • PDF

The Die Design for Semi-Solid Forging Process of Computer Simulation and Experimental Investigation of Filling Phenomenon (컴퓨터 시뮬레이션을 이용한 반용융 단조공정의 금형설계 및 충전현상의 실험적 검토)

  • 이동훈;강충길
    • Transactions of Materials Processing
    • /
    • v.10 no.5
    • /
    • pp.373-382
    • /
    • 2001
  • Die design by computer simulation has some advantages compared with the conventional method which has performed by designer's experiences and trials and errors. The die filling and solidification process of thixoforming process were simulated by MAGMAsoft/thixo module. Furthermore, the die design for thixoforming was performed with the various geometry shape. The effect of designed gate dimension on filling phenomenon was estimated by filling simulation. The calculated results was compared with experimental data. The free surface phenomenon obtained by experiment have good agreement with computer simulation results. The solidification effect much as prosity and shrinkage for designed semi-solid forging die had been predicted by computer simulation. The designed die for semi-solid forging had been applied to produce of the frame part which is used to airconditious system.

  • PDF

Rigid-Viscoplastic Finite Element Analysis of Piercing Process in Automatic Simulation of Multi-Stage Forging Processes (다단 단조공정의 자동 시뮬레이션 중 피어싱 공정의 강점소성 유한요소해석)

  • 이석원;최대영;전만수
    • Transactions of Materials Processing
    • /
    • v.8 no.2
    • /
    • pp.216-221
    • /
    • 1999
  • In this paper, an application-oriented approach to piercing analysis in automatic forging simulation by the rigid-viscoplastic finite element mehtod is presented. In the presented approach, the accumulated damage is traced and the piercing instant is determined when the accumulated damage reaches the critical damage value. A method of obtaining the critical damage value by comparing the tensile test result with the analysis one is given. The presented approach is verified by experiments and applied to automatic simulation of a sequence of 6-stage forging processes.

  • PDF

Special Simulation Technique of Multi-Faced Long Bolt Forging Process (장축 다각 볼트 제조공정의 시뮬레이션 기술)

  • Han, S.S.;Eom, J.G.;Jang, S.M.;Lee, M.C.;Joun, M.S.;Kang, S.J.;Son, Y.R.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.05a
    • /
    • pp.44-47
    • /
    • 2009
  • In this paper, limitation of rigid-plastic finite element method caused from rigid-plasticity assumption and numerical problem is investigated in detail and a useful scheme is proposed to get rid of the plastic deformation in rigid or elastic region. A typical example of a possible long bar extrusion process is given, which may be impossible to simulate without using the proposed scheme. The scheme is successfully applied to simulating the long bolt forging processes.

  • PDF

Finite Element Simulation of a Pore Closing Process during Upsetting in Open Die Forging (자유단조에서 업세팅 공정 중 기공 압착 과정의 유한요소 시뮬레이션)

  • Lee, M.C.;Cho, J.H.;Choi, I.S.;Jang, S.M.;Joun, M.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.05a
    • /
    • pp.79-83
    • /
    • 2008
  • We carry out three-dimensional simulation of pore closing processes during upsetting in open die forging. Several pores on a plane section of a cylindrical material are traced at the same time and the results of hydrostatic pressure and effective strain are discussed to reveal the parameters affecting pore closing phenomena. Five different sizes of pores are also investigated by simulation to reveal the pore size effect in pore closing during upsetting. AFDEX 3D is employed for this study.

  • PDF

Model-based Scheduling Optimization of Heat Treatment Furnaces in Hot Press Forging Factory (비용 예측 모형 기반 열처리로 작업 계획 최적화)

  • Heo, Hyeong-Rok;Kim, Se-Young;Ryu, Kwang-Ryel
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2019.10a
    • /
    • pp.939-941
    • /
    • 2019
  • 단조는 강괴를 고온으로 가열하고 원하는 형상으로 만드는 공정이다. 가열로에 강괴를 장입하여 가열하고, 고온의 강괴에 프레스, 절단 공정을 적절히 반복하여 원하는 형상으로 만든다. 형상이 완성된 강괴의 경도 및 강도를 조절하기 위해 열처리 공정을 진행한다. 열처리로에 여러 개의 강괴를 장입하여 가열하기 때문에 에너지 비용이 많이 소모된다. 열처리 공정 비용은 열처리 공정의 종류와 장입되는 강괴들의 특성 및 수량 등에 따라서 결정된다. 열처리로에 장입할 강괴 조합을 최적화함으로써 비용을 최소화시킬 수 있다. 따라서 본 논문에서는 비용 예측 모형을 이용하여 열처리로 작업 계획을 최적화하는 방안을 제안한다. 비용 예측 모형은 IoT 인프라를 기반으로 수집한 공정 데이터를 이용하여 학습한다. 다양한 열처리로 작업 계획은 학습한 모형 기반의 시뮬레이션을 통해 평가하여 유전 알고리즘을 기반으로 최적화한다. 최적의 열처리로 작업 계획을 수립함으로써 공정 비용을 최소화하고 에너지 효율을 극대화할 수 있다.

Simulation of Rotary Forging Process by Model Material Technique (모델재를 이용한 회전단조 공정의 시뮬레이션)

  • 윤덕재;최석우;나경환;김종호
    • Transactions of Materials Processing
    • /
    • v.4 no.1
    • /
    • pp.9-16
    • /
    • 1995
  • Model material technique, which requires only the small space of experimental set-up and low cost for experiment, is used to estimate the deformed profile and the forging load in rotary forging. The materials and working conditions are determined to satisfy the similitude conditions between the model test and the prototype test. The model material of the so-called plasticine and the mild steel are chosen as specimens, and they represent almost the same value of strain gardening exponent in the stress-strain relationship. Lubricant in the model test is also carefully selected so that it gives the same frictional conditions at the tool-specimen interface. Experiments for two kinds of specimens are carried out in each testing equipment at room temperatue. From the experiments the deformed dimensions and the forging loads are measured and compared with each other by using the simulation coefficients. It is shown that there are good agreements between the model test and the prototype test. Finally, for verifying the availability of the model material technique this mathod is applied to forging of bevel gear product. the good result is obained which can demonstrate that the model material technique is very efficent for estimating or developing a new process.

  • PDF

Learning Ability of Deterministic Boltzmann Machine with Non-Monotonic Neurons in Hidden Layer (은닉층에 비단조 뉴런을 갖는 결정론적 볼츠만 머신의 학습능력에 관한 연구)

  • 박철영
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.11 no.6
    • /
    • pp.505-509
    • /
    • 2001
  • In this paper, we evaluate the learning ability of non-monotonic DMM(Deterministic Boltzmann Machine) network through numerical simulations. The simulation results show that the proposed system has higher performance than monotonic DBM network model. Non-monotonic DBM network also show an interesting result that network itself adjusts the number of hidden layer neurons. DBM network can be realized with fewer components than other neural network models. These results enhance the utilization of non-monotonic neurons in the large scale integration of neuro-chips.

  • PDF

Optimization of a Hot Forging Process Using Six Sigma Scheme and Computer Simulation Technology Considering Required Metal Flow tines (6시그마 기법과 컴퓨터 시뮬레이션 기술을 이용한 금속유동선도를 고려한 열간 단조공정의 최적화)

  • Moon H. K.;Moon S. C.;Eom J. G.;Joun M. S.
    • Transactions of Materials Processing
    • /
    • v.14 no.9 s.81
    • /
    • pp.798-803
    • /
    • 2005
  • In this paper, the six sigma scheme together with the rigid-viscoplastic finite element method is employed to obtain the optimal metal flow lines of a hot forging according to the six sigma processes, i.e., five steps such as define, measure, analyze, improve and control. Each step is investigated in detail to meet customer's requirements through improvement of product quality. A forging simulator is used for analysis of the metal flow lines of the hot forging, manufactured by a hot press forging machine, under various conditions of major factors determined at each step. The analyzed results are examined in order to reveal the effects of major factors on the metal flow lines and the formed shapes. The effects are then used to find an optimal process and the optimal process with die is devised and tested. The comparison between the required metal flow lines and the experiments shows that the approach is effective for optimal process design in hot forging considering metal flow lines.

Schedulability Test using task utilization in Real-Time system (실시간 시스템에서 태스크 이용율을 이용한 스케줄링 가능성 검사)

  • Lim Kyung-Hyun;Seo Jae-Hyeon;Park Kyung-Woo
    • Journal of Internet Computing and Services
    • /
    • v.6 no.2
    • /
    • pp.25-35
    • /
    • 2005
  • The Rate Monotonic(RM) scheduling algorithm and Earliest Deadline First(EDF) scheduling algorithm are normally used in Real-Time scheduling algorithm. In those scheduling algorithm, we could predict the performance possibility with total utilization value of task group. But. it had problems with prediction of the boundedness in individual task when the utilization value was over in temporary task. In this paper, the suggested scheduling algorithm can predict task when the utilization value was over and it suggested the method of predicting scheduling possibility based on the utilization value of individual task as well. it predicted the boundedness of scheduling possibility test through simulation In Real-Time scheduling algorithm and analyzed the result.

  • PDF