• Title/Summary/Keyword: 단조금형

Search Result 226, Processing Time 0.028 seconds

Development of Die Design System for Turbine Blade Forging (터빈 블레이드의 형단조 금형설계의 자동화에 관한 연구)

  • 최병욱;조종래;왕지석;김동권;김동영
    • Transactions of Materials Processing
    • /
    • v.8 no.6
    • /
    • pp.569-575
    • /
    • 1999
  • Computer programs have been developed to design the forging dies of turbine and compressor blades. The design of forging dies is based the side force and the filling of die cavity. In this study, slab method has been applied to simulate forging processes numerically. the program composed of Visual Basic also provides the informations of mean stress, total forging load, distribution of temperature, position of neutral line, total volume and volume of flash in the final stage to users. The preform position is predicted by the reverse slab method. The program has been successfully applied to various types of turbine blades.

  • PDF

A Study on the Process Planning and Die Design of Hot Forging for Axisymmetric Parts(I) (축대칭 부품에 대한 열간단조의 공정 및 금형설계에 관한 연구(I))

  • Choi, J.C.;Kim, B.M.;Kim, S.W.;Lee, J.S.;Hong, S.S.;Kim, N.H.
    • Transactions of Materials Processing
    • /
    • v.1 no.1
    • /
    • pp.20-32
    • /
    • 1992
  • This paper describes some research of Computer-Aided Process Planning and Die Design of Hot Forging for axisymmetric parts produced by the press. An approach to the system is based on knowledge based system. The system has been written in AutoLisp with personal computer. Knowledges for process planning & die design are extracted from the plasticity theories, handbooks, relevent references and empirical know-how of field experts in hot forging companies. The developed system is composed of five main modules, such as input module, process planning module, die design module, flow simulation module and output module which are used independently or in all. The final output is generated in graphic from. The developed system which aids designer provides powerful capabilities for process planning and die design of hot forging. This system also provides approximate flow pattern.

  • PDF

Life and Mechanical Properties of Hot Former Die for Bearing Race using P/M High Speed Steel (분말고속도공구강을 활용한 베어링 레이스 열간 단조 금형의 수명 및 기계적 특성)

  • Hong, Seong-Hyeon;Bae, Jong-Soo
    • Journal of Powder Materials
    • /
    • v.14 no.6
    • /
    • pp.367-371
    • /
    • 2007
  • P/M high speed steel (1.26% C, 4.42% Cr, 6.54% W, 4.92% Mo, 3.21 % V, 8.77% Co, bal. Fe) was applied to hot former die. It showed that the die life became 2.7 times higher than that of cast/wrought SKH 55 tool steel which is commercially used. The increase of die life was corresponding to the improved hardness and transverse rupture strength of PM high speed steel due to the finer grain and carbide as well as the uniform carbide distribution. The P/M high speed steel with the promoted die life could be an alternative to the conventional SKH55.

Wear Analysis of Hot Forging Die considering Thermal Softening (열연화 현상을 고려한 열간 단조 금형의 마멸해석)

  • 이진호;김동진;김병민;김호관
    • Transactions of Materials Processing
    • /
    • v.9 no.1
    • /
    • pp.43-51
    • /
    • 2000
  • The die wear is one of the main factors affecting product accuracy and die life in hot forging process. It is desired to analyze die wear by developing wear prediction method combined with FE-simulatin and experiment. Lots of researches have been done into the wear analysis of cold forging die, and the results of those researches were successful, but there have been little applications to hot forging die giving successful results. That is because hot forging process has many factors influencing die wear, and there was not accurate in-process data. In this research, change of die surface hardness by thermal softening during the lifetime was obtained by experiment, and hardness distribution of cross section was measured. This wear analysis was applied to hot forging die, and gave comparatively good results compared with actual wear profile.

  • PDF

A Structural Analysis System for Forging Die Sets Design, AFDEX/DIE (단조용 금형세트 설계용 구조해석 시스템 AFDEX/DIE)

  • 전만수;이민철;류찬호;조홍석
    • Transactions of Materials Processing
    • /
    • v.9 no.2
    • /
    • pp.165-170
    • /
    • 2000
  • In this paper, a general approach to structural analysis of forging die sets is presented and the related design system, AFDEX/DIE, is introduced. Structural analysis of die sets is conducted by the finite element method considering both contact problem and shrink fit. In the approach, amount of shrink fit is controlled by thermal load, i.e., temperature difference between die insert and shrink rings. The loading conditions are extracted automatically from the simulation results obtained by a rigie-thermoviscoplatic finite element method. Typical application examples are given, which show the applicability of the approach and the related program.

  • PDF

Finite Element Analysis of a Piercing and Trimming Process Having a Spring-Attached Die in Hot Former Forging (열간포머 단조공정중 스프링부착 금형을 가진 피어싱과 트리밍 동시공정의 유한요소해석)

  • 문호근;정재헌;전만수
    • Transactions of Materials Processing
    • /
    • v.12 no.6
    • /
    • pp.536-541
    • /
    • 2003
  • In this paper, the rigid-viscoplastic finite element method is employed together with an iteratively force-balancing method to analyze a piercing and trimming process with a spring-attached die in hot former forging. An actual piercing and trimming process with a spring-attached die is investigated in detail and a generalized analysis model is proposed. A multi-stage hot former forging process is simulated under various spring constants. The analyzed results are discussed in order to investigate the effects of spring constants on the metal flow lines and the formed shapes. Then an optimal piercing and trimming process in hot former forging is devised.

Process variables and die life for cold forging (냉간단조용 금형 수명에 미치는 공정 변수의 영향)

  • Lee Y. S.;Choi S. T.;Kwon Y. N.;Rhyim Y. M.;Lee J. H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.05a
    • /
    • pp.215-218
    • /
    • 2005
  • For the production of cold forged parts with near-net-shape attributes, the quality of the tool system is responsible for an essential portion of costs fer the finished components. Therefore, a tool lift is one of the important issues on cold forging industry. There are many complicated variables related with tool life, such as material, heat-treatment, coating, lubricant, process design. In this study, heat-treatment of tool material and lubricant are investigated to improve the tool life. Deep cryogenic treatment of tool steel is very efficient to improve the wear resistance due to the fine carbide. And, friction factor of lubricants for cold forging are measured by the ring compression test. Zinc-Phosphate and $MoS_2$ lubricant is effective to sustain the friction factor under 0.1.

  • PDF

A Study on the Prediction of Void Closure in the Cogging Process of a Large Round Bar (대형 단조품 환봉 코깅 공정의 기공 압착 거동 예측에 관한 연구)

  • Song, M.C.;Kwon, I.K.;Park, Y.G.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.05a
    • /
    • pp.75-78
    • /
    • 2008
  • The predictive equation of void-closure was developed to evaluate void crush ratio with respect to the process variables in the cogging process of a large round bar. The comprehensive finite element analysis with the process variables such as reduction ratio and die width ratio was carried out. The predictive equation of void-closure for cogging process was established on the basis of the regression analysis with the extensive FE analysis results and verified by comparing the predicted results with FEA results with various forging passes.

  • PDF

Dimensional Changes of Workpiece and Die in Cold Upsetting by the Closed-Die at Each Stage (냉간 밀폐 업세팅시 금형과 단조소재의 성형 단계별 치수 변화)

  • 이영선;권용남;천세환;이정환
    • Transactions of Materials Processing
    • /
    • v.12 no.7
    • /
    • pp.662-667
    • /
    • 2003
  • The dimensions of die and workpiece are changed continuously during loading, unloading, and ejecting stage. Finally, to predict precisely the dimension of forged part and get the die dimension for the net-shape components, the analysis of die and workpiece should be evaluated from the loading to ejecting. Therefore, the experimental and FEM analyses are performed to investigate the elastic characteristics at workpiece and die in the closed-die upsetting for ferrous material FE techniques are proposed to consider the unloading and ejecting stages and estimate more precisely the dimension of forged part and die. The dimensional changes fur the workpiece were evaluated quantatively during loading, unloading, and ejecting stages. The strains measured by the strain gages were compared with the estimated values by the FEM.

Computer-Aided Process Planning and Die Design for Hot Forging of H-Shaped Plane Strain Components (평면변형 H-형재의 열간단조, 공정설계 및 금형설계)

  • Park, J.C.;Kim, B.M.;Kim, S.W.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.11 no.2
    • /
    • pp.104-109
    • /
    • 1994
  • This research describes some developments of computer-aided process planning and die design for hot forging products of H-shaped plane strain produced by the press. The system is composed of three main modules(process planning module, die design module and simulation module) which are used independently or in all. Systm capabilities include as follows: 1. In die design module, using the results of process planning module, the shape and size of bolcker and finish die in each operation are determined and the ouput id generated in graphic form for manufacturing drawing. 3. In simulation module, the flow pattern of workpiece and the load/stroke curve are approximately predicted. Design rules for process planning and die design are extracted from plasticity theories, handbooks, relevant references and empirical know-how of field experts in hot forging companies. The developed system provides poweful capabilities for process planning and die design of hot forging products.

  • PDF