• Title/Summary/Keyword: 단일 B 세포 분리 시스템

Search Result 2, Processing Time 0.016 seconds

Development of Rapid Antibody-based Therapeutic Platform Correspondence for New Viruses Using Antigen-specific Single Cell Memory B Cell Sorting Technology (항원 특이적 단일 기억 B 세포 분리를 이용한 신종 바이러스 대응 신속 항체 플랫폼 개발)

  • Jiyoon Seok;Suhan Jung;Ye Gi Han;Arum Park;Jung Eun Kim;Young Jo Song;Chi Ho Yu;Hyeongseok Yun;Se Hun Gu;Seung-Ho Lee;Yong Han Lee;Gyeunghaeng Hur;Woong Choi
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.27 no.1
    • /
    • pp.116-125
    • /
    • 2024
  • The COVID-19 pandemic is not over despite the emergency use authorization as can see recent COVID-19 daily confirmed cases. The viruses are not only difficult to diagnose and treat due to random mutations, but also pose threat human being because they have the potential to be exploited as biochemical weapons by genetic manipulation. Therefore, it is inevitable to the rapid antibody-based therapeutic platform to quickly respond to future pandemics by new/re-emerging viruses. Although numerous researches have been conducted for the fast development of antibody-based therapeutics, it is sometimes hard to respond rapidly to new viruses because of complicated expression or purification processes for antibody production. In this study, a novel rapid antibody-based therapeutic platform using single B cell sorting method and mRNA-antibody. High immunogenicity was caused to produce antibodies in vivo through mRNA-antigen inoculation. Subsequently, antigen-specific antibody candidates were selected and obtained using isolation of B cells containing antibody at the single cell level. Using the antibody-based therapeutic platform system in this study, it was confirmed that novel antigen-specific antibodies could be obtained in about 40 days, and suggested that the possibility of rapid response to new variant viruses.

Role of T7 phage lysozyme affected sequence-specific transcription termination by T7 RNA polymerase (염기서열 특이적 전사종결에 영향을 주는 T7 파아지 lysozyme의 역할)

  • Kim, Dong-Hee;Lee, Sang-Soo
    • The Journal of Natural Sciences
    • /
    • v.14 no.1
    • /
    • pp.51-61
    • /
    • 2004
  • T7 RNA polymerase is a single subunit RNA polymerase able to accomplish whole transcription process without auxiliary factors. T7 phage lysozyme involcing in destruction of host cell wall repress T7 transcription and affects transcription termination process. Therefore expression vector pT7lys containing T7 phage lysozyme gene was constructed and expressed. T7 phage lysozyme protein was purified to homogeneity by Ni-NTA column chromatography. Also amidase activity of the purified lysozyme was identified. In order to understand the effect of the lysozyme on the sequence specific transcription termination. T7 transcription elongation complexes at the site rrnB T1 transcription termination signal were made in the presence the lysozyme. The results shows that the transcription elongation complexes are unstable in the presence of T7 phage lysozyme.

  • PDF