• Title/Summary/Keyword: 단일 종단 여파기 설계

Search Result 2, Processing Time 0.018 seconds

Wideband Power Divider Using a Coaxial Cable (동축선을 이용한 광대역 전력 분배기)

  • Park, Ung-Hee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.4
    • /
    • pp.661-668
    • /
    • 2012
  • A coaxial-cable impedance transformer that can be used in high power and wideband frequency range is an arbitrary impedance transformation ratio by an additional coaxial cable. The coaxial-cable impedance transformer to be 50-${\Omega}$ to 25-${\Omega}$ impedance transformation ratio is easily operated an wideband power divider by connecting two 50-${\Omega}$ lines at 25-${\Omega}$ impedance point. This wideband power divider has a poor output matching characteristic and a poor isolation characteristic between two output ports. In this paper, it proposes a coaxial-cable power divider to be a good output matching and isolation characteristics as it uses the singly terminated filter design theory. The odd-mode operation characteristic of the suggested power divider to use singly terminated low pass filter coefficient due to matching order and ripple value is examined by ADS program. And, it fabricates and measures the operation characteristic of 2-way power divider with 2nd-order and 4th-order matching circuit.

Design of A Microwave Planar Broadband Power Divider (마이크로파대 평면형 광대역 전력 분배기 설계)

  • Park, Jun-Seok;Kim, hyeong-Seok;Ahn, Dal;Kang, Kwang-yong
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.12 no.4
    • /
    • pp.651-658
    • /
    • 2001
  • A novel multi-section power divider configuration is proposed to obtain wide-band frequency performance up to microwave frequency region. Design procedures for the proposed microwave broadband power divider are composed of a planar multi-section three-ports hybrid and a waveguide transformer design procedures. The multi-section power divider is based on design theory of the optimum quarter-wave transformer. Furthermore, in order to obtain the broadband isolation performance between the two adjacent output ports, the odd mode equivalent circuit should be matched by using the lossy element such as resistor. The derived design formula for calculating these odd mode matching elements is based on the singly terminated filter design theory. The waveguide transformer section is designed to suppress the propagation of the higher order modes such as waveguide modes due to employing the metallic electric wall. Thus, each section of the designed waveguide transformer should be operated with evanescent mode over the whole design frequency band of the proposed microwave broadband power divider. This paper presents several simulations and experimental results of multi-section power divider to show validity of the proposed microwave broadband power divider configuration. Simulation and experiment show excellent performance of multi section power divider.

  • PDF