본 연구는 텍스트 분류를 위한 효율적인 자질선정 방법으로 자질 순위화 기법의 성능을 구체적으로 검토하였다. 지금까지 자질 순위화 기법은 주로 문헌빈도에 기초한 경우가 대부분이며, 상대적으로 용어빈도를 사용한 경우는 많지 않았다. 따라서 텍스트 분류를 위한 자질선정 방법으로 용어빈도와 문헌빈도를 개별적으로 적용한 단일 순위화 기법들의 성능을 살펴본 다음, 양자를 함께 사용하는 조합 순위화 기법의 성능을 검토하였다. 구체적으로 두 개의 실험 문헌집단(Reuters-21578, 20NG)과 5개 분류기(SVM, NB, ROC, TRA, RNN)를 사용하는 환경에서 분류 실험을 진행하였고, 결과의 신뢰성 확보를 위해 5-fold cross validation과 t-test를 적용하였다. 결과적으로, 단일 순위화 기법으로는 문헌빈도 기반의 단일 순위화 기법(chi)이 전반적으로 좋은 성능을 보였다. 또한, 최고 성능의 단일 순위화 기법과 조합 순위화 기법 간에는 유의한 성능 차이가 없는 것으로 나타났다. 따라서 충분한 학습문헌을 확보할 수 있는 환경에서는 텍스트 분류의 자질선정 방법으로 문헌빈도 기반의 단일 순위화 기법(chi)을 사용하는 것이 보다 효율적이라 할 수 있다.
본 논문에서는 다중레벨 직교진폭변조 신호론 위한 최우 변조분류기법의 성능을 분석한다. 기존의 연구와는 달리 여기서는 가용 변조방식에 대한 상대적인 분규성능과 단일표본관측을 적용할 경우 최우 분류기의 성능한계 둥을 제시하였다. 이를 위하여 본 논문에서는 가용 성상도에서 심볼간 최소 유클리드 거리론 동일하게 하여 심볼의 수가 자은 성상도가 보다 큰 성상도의 부분집합이 되도록 하였다 그리고 다중가설시험을 위한 표본의 수는 하나로 정하였다. 그 결과 모든 실험에서 신호대잡음비의 증가에 따라 분류성능이 향상됨을 될 수 있다. 특히, 참인 성상도가 4진 직교진폭변조인 경우 추가적인 정보나 관측표본 없이도 송신기에서 사용된 변조방식을 거의 완벽하게 분류함을 확인할 수 있다. 또한 16진과 64진 신호의 경우 그 부분집합이 되는 성상도에 의하여 공유된 심볼들의 영향으로 오분류 가능성이 상존하지만 단일표본관측만으로도 약 $80{\%}$의 정분류 성능을 얻을 수 있다.
본 논문에서는 혼합형 데이터에 대한 특징 선별 기법의 효율성을 비교하기 위해 특징 필터링과 특징 래핑을 통한 특징 선별 후, 클래스 분류 성능을 측정하였다. 혼합형 데이터는 숫자형 특징과 범주형 특징이 함께 혼합되어 있으므로, 숫자형 특징을 범주형 특징으로 이산화를 하여 단일형 데이터로 변환한 뒤 특징 선별 기법 등을 적용할 수 있다. 본 연구에서는 혼합형 데이터를 전처리하여 단일형 데이터로 변환하고, 널리 활용되는 특징 필터링 기법과 특징 래핑 기법을 통해 클래스 분류 성능을 높일 수 있는 특징 집합을 선별하였다. 선별된 특징 집합을 통한 클래스 분류 성능을 비교한 결과, 특징 필터링에 비해 특징 래핑을 통해 선별한 특징 집합을 활용하여 클래스 분류를 하였을 때 분류 정확도가 높은 것을 확인할 수 있었다.
본 논문에서는 다수의 특징과 이진 분류 트리를 이용하여 장면 전환점(shot change)을 검출하는 향상된 방식을 제안한다. 기존의 장면 전환점 검출 방식에서는 인접한 프레임간에 단일 특징과 고정된 임계값을 주로 사용하였다. 하지만, 비디오 시퀀스 내의 장면 전환점에서는 인접한 프레임간의 내용(content)인 컬러, 모양, 배경 혹은 질감 등이 동시에 변화한다. 따라서 본 논문에서는 단일 특징보다는 상호 보완 관계를 갖는 다수의 특징을 이용하여 장면 전환점을 효율적으로 검출한다. 그리고 장면 전환점의 분류를 위해서는 이진 분류 트리(binary classification tree)를 이용한다. 이 분류 결과에 따라 장면 전환점 검출에 사용될 중요한 특징들을 선별하고, 각 특징들의 최적 임계값을 구한다. 또한, 분류 성능을 확인하기 위해 교차검증(cross-validation)과 드롭 케이스(drop-case)를 수행하였다. 실험 결과, 제안된 기법이 단일 특징들만을 사용한 기존의 방법들 보다 El(Evaluated Index, 성능평가지수)에서 평균 2%의 성능이 향상됨을 알 수 있었다.
효과적인 동물 생태계 분석을 위해서는 동물 서식 현황을 자동으로 파악할 수 있는 동물 관제 기술이 중요하다. 특히 울음소리로 종을 판별하는 동물 소리 분류 기술은 영상을 통한 판별이 어려운 환경에서 큰 주목을 받고 있다. 기존 연구들은 단일 딥러닝 모델을 사용하여 동물 소리를 분류하였으나, 야외 환경에서 수집된 동물 소리는 많은 배경 잡음을 포함하여 단일 모델의 판별력을 악화시키며, 종에 따른 데이터 불균형으로 인해 모델의 편향된 학습을 야기한다. 이에, 본 논문에서는 클래스의 데이터 수를 고려하여 페널티를 부여하는 Focal Loss를 사용한 여러 분류 모델의 예측결과를 앙상블을 통해 결합하여 잡음이 많은 동물 소리를 효과적으로 분류할 수 있는 기법을 제안한다. 공개 데이터 셋을 사용한 실험에서, 제안된 기법은 단일 모델의 평균 성능에 비해 Recall 기준으로 최대 22.6%의 성능 개선을 달성하였다.
서포트 벡터 머신은 얼굴인식이나 문자인식과 같은 다양한 패턴인식 문제에서 좋은 성능을 보여준다. 그러나 이러한 문제는 Quadratic Programming(QP) 문제에 관하여 몇 가지 단점을 가지고 있다. 일반적으로 대용량의 QP 문제를 해결하기 위해 많은 계산비용이 요구되며, QP 기반 시스템을 효과적으로 구현하는 것이 쉽지 않은 문제이다. 또한 대규모 데이터의 처리 시에는 입출력을 맞추기 또한 쉽지 않은 단점이 있다. 본 논문에서는 위의 단점을 극복하기 위하여 단일부류 문제를 최소제곱 서포트 벡터 머신을 기반으로 하여 해결하였다. 제안한 방법은 QP 문제를 해결하는 과정이 없이 단일부류 문제를 표현하여 최소제곱 방법을 이용하는 알고리즘이다. 제안된 방법으로 쉽고, 계산 비용을 줄이는 결과를 얻었다. 또한 서포트 벡터 영역 표식자에 확장 적용하여 선형방정식으로 구현하여, 문제를 해결하였다. 제안된 방법의 효율성을 입증하기 위하여 패턴인식 분야 중에 얼굴 인증 방법과 바이오인포매틱스 분야 중에 전립선 암 분류 문제에 적용하였다. 우리의 실험결과는 적합한 성능과 좋은 Equal Error Rate(EER)를 보여준다. 제안된 방법은 알 수 없는 물체의 분류 방법의 효율성을 증대시켰고, 실시간 응용분야에 직접적으로 적용될 수 있을 것으로 기대 된다.
단일 이미지로부터 3D 모델을 생성하는 방법은 메타버스와 가상현실 콘텐츠에 대한 필요성이 높아짐에 따라, 보다 효율적인 모델 생성방법으로서 관심이 높아지고 있다. 본 논문에서는 단일 이미지로부터 3D 모델을 자동 생성하는 기존 딥-뉴럴 네트워크들을 대상으로, 생성되는 3D 모델의 유형에 따라 기존 네트워크들을 분류하고, 주요 딥-뉴럴 네트워크의 형태와 특징, 그리고 모델 생성의 성능을 분석하고자 한다.
다중 전극으로 측정한 활동 전위의 분류(Multi-electrode spike sorting)는 단일 전극(single-electrode)보다 더 정확한 결과를 보여준다. 그러나 다중 전극에서 주어지는 활동 전위 크기들의 클러스터는 일반적으로 분류하기 쉴지 않은 문제이다. 이 논문에서는 고전적인 클러스터링 알고리듬 중의 하나인 Mountain method를 수정하여 다중 전극 활동전위의 분류에 적합한 알고리듬을 제안한다. 통상적인 데이터 클러스터링이 아닌 공간 분할을 통해 신경 데이터의 다양한 클러스터에 대해서 적응도가 높아지고 빠른 분류를 하게 된다.
본 논문에서는 양상 뮤 논리를 위한 속성 명세 패턴 연구를 통해 시제 논리에 대한 패턴 기반의 단일한 프레임워크를 제시한다. 본 연구에서는 Dwyer의 속성 명세 패턴 분류를 상태(S)와 행동(A)으로 세분화하고 이를 다시 강함(A)와 약함(E)으로 다시 세분했다. 이러한 의미 기반의 계층적 패턴 분류 체계를 통해 양상 뮤 논리의 속성 명세 패턴을 분석했으며 실제 모형 검사기에서 사용된 예제들의 패턴 분류에 적용했다. 그 결과 기존의 분류 체계보다 더 정확한 분류가 가능했을 뿐만 아니라, 속성 명세의 작성 및 이해가 용이하였다.
판례 자동분류 시스템은 일반적인 문서 자동분류 시스템과 기본적인 동작방법은 동일하다. 본 논문에서는 노동법에 관련된 판례를 대상으로 지지벡터기계(SVM), 단일 의사결정나무, 복수 의사결정나무, 신경망 기법 등을 사용하여 문서의 자동 분류 실험을 수행하고, 판례분류에 가장 적합한 기계학습기법이 무엇인지를 실험해 보았다. 실험 결과 복수 의사결정나무가 93%로 가장 높은 정확도를 나타내었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.