• Title/Summary/Keyword: 단일벽 탄소 나노튜브

Search Result 117, Processing Time 0.027 seconds

Compressive and Torsional Buckling Behavior of Carbon Nanotube Bundles (탄소나노튜브 다발의 압축 및 비틀림 좌굴 거동)

  • Jeong, Byeong-Woo;Lim, Jang-Keun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.8
    • /
    • pp.862-869
    • /
    • 2007
  • The compressive and torsional buckling behavior of carbon nanotube bundles at room temperature is examined with classical molecular dynamics simulation. The critical compressive load and stiffness of a single carbon nanotube in the bundle are found to be similar to those of individual carbon nanotubes. However, the critical torsional moment and stiffness of a single carbon nanotube in the bundle are found to be higher than those of individual carbon nanotubes. In addition, this study demonstrates that van der Waals interactions between the nanotubes in the bundle significantly affect the critical compressive load of the nanotube bundle.

Measurement of Thermal Diffusivity and the Optical Properties of a Carbon Nanotube Dispersion by Using the Thermal Lens Effect (열렌즈 효과를 이용한 탄소 나노 튜브 분산액의 열확산도와 광학적 특성 측정)

  • Park, Hyunwoo;Kim, Hyunki;Kim, Sok Won;Lee, Joohyun
    • New Physics: Sae Mulli
    • /
    • v.68 no.11
    • /
    • pp.1167-1172
    • /
    • 2018
  • Carbon nanotubes (CNTs) are structures of carbon atoms bonded together in hexagonal honeycomb shapes, with multi-walled CNTs having a very high thermal conductivity of $3000W/m{\cdot}K$ and single-walled CNTs having a conductivity of $6000W/m{\cdot}K$. In this work, the transmittance and the thermal diffusivity of a multi-walled carbon nanotube dispersion with a concentration of 1.5 M were measured using a single beam method, a dual beam method, and the thermal lens effect. The nonlinear optical coefficients were obtained by using the z-scan method, which moved the sample in the direction of propagation of the single laser beam, propagation and the thermal diffusivity was measured using a double laser beam. As a pump beam, a diode-pumped solid state (DPSS) laser with a wavelength of 532 nm and an intensity of 100 mW was used. As the probe beam, a He-Ne laser having a wavelength of 633 nm and an intensity of 5 mW was used. The experimental result shows that when the concentrations of the sample were 9.99, 11.10, 16.65, and 19.98 mM, the nonlinear absorption coefficients were 0.046, 0.051, 0.136 and 0.169 m/W, respectively. Also, the nonlinear refractive indices were 0.20, 0.51, 1.25 and $1.32{\times}10^{-11}m^2/W$, respectively, and the average thermal diffusivity was $1.33{\times}10^{-6}m^2/s$.

Theoretical Analysis of Carbon Nanotube Actuators (탄소나노튜브 작동기의 이론적 해석)

  • Park C.H.;Park H.C.;So H.K.;Jung B.B.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.927-931
    • /
    • 2005
  • Carbon nanotube actuator, working under physical conditions (in aqueous solution) and converting electrical energy into mechanical energy directly, can be a good substitute for artificial muscle. The carbon nanotube actuator simulated in this paper is an isotropic cantilever type with an adhesive tape which is sandwiched between two single-walled carbon nanotubes. For predicting the static and dynamic characteristic parameters, the analytical model for a 3 layer bimorph carbon nanotube actuator is developed by using Euler-Bernoulli beam theory. The governing equation and boundary conditions are derived from energy principles. The induced displacements of the theoretical model are presented in order to investigate the performance of the carbon nanotube actuator with different control voltages. The developed model presents invaluable means for designing and predicting the performance of carbon nanotube actuator that can be used in artificial muscle applications.

  • PDF

The Fabrication of A Semi-conducting Single-walled Carbon Nanotube Device Using A Burning Technique (연소 기술을 이용한 반도체성 단일벽 탄소 나노튜브 장치 제작)

  • 이형우;한창수;김수현;곽윤근
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.881-885
    • /
    • 2004
  • We report a method for making a device on which semi-conducting single-walled carbon nanotubes are attached selectively between two metal electrodes. This method is divided two processes. First we can connect a rope of single-walled carbon nanotubes(SWNTs) between two electrodes using the electric field. But a SWNTs' rope obtained by the first process was composed of a few of metallic and semi-conducting SWNTs together. The second process is to burn the metallic and semi-conducting nanotubes through applying a voltage. As a result, we can obtain a semi-conducting SWNT device. To make the patterned electrodes, we deposited $SiO_2$(150nm) on a wafer. After then, we made a patterned samples with Ti(200 $\AA$)/Au(300$\AA$). We empirically obtained a electric condition 0.66 $V_{pp}$ /${\mu}{\textrm}{m}$@5MHz. From this result, we verified that most of current go through the metallic nanotubes in this device. When we apply DC voltage between two electrodes, the metallic carbon nanotubes are burnt. Finally, we can obtain a semi-conducting nanotube device which we desire to make. We got the I-V characteristic graph which has shown the semi-conducting property. We hope to apply to the various applications using this selective semi-conducting carbon nanotube deposition method.ethod.

  • PDF

수평형 열화학기상증착 반응기를 이용한 고수율의 단일벽 탄소나노튜브 합성 연구

  • Jo, Seong-Il;Jeong, Gu-Hwan
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2018.06a
    • /
    • pp.47-47
    • /
    • 2018
  • 단일벽 탄소나노튜브 (Single-walled carbon nanotubes, SWNTs)는 우수한 물리적 화학적 특성을 갖고 있어 나노전자소자, 투명전도막, 에너지소자, 센서 등 다양한 분야로의 응용이 기대되고 있다. 열화학기상증착(Thermal chemical vapor deposition, TCVD)법은 SWNTs의 합성 공정이 간단하고 공정변수의 제어가 용이하다는 장점이 있어 SWNT 합성 연구에 가장 널리 사용되어 왔다. 일반적으로 금속 촉매의 박막이 증착된 합성 기판은 온도가 가장 높고 비교적 균일성이 보장되는 TCVD 반응기의 중심부에 위치시키고 공정변수를 변화해가며 연구를 진행해 왔다. 본 실험실에서는 수평형 반응기 전역에 합성 기판을 설치하여 SWNTs를 합성한 결과, 반응기의 중심보다 뒤의 영역에서 SWNTs의 합성 수율이 상당히 증가하는 것을 초기실험을 통해 확인하였다. 본 연구에서는 SWNTs 합성 시 가스 유량과 합성 온도를 변화시켰을 때 기판 위치에 따른 SWNTs의 수율 및 물성변화를 구체적으로 조사하였다. 합성가스와 촉매로는 메탄가스와 철 박막을 사용하였으며, 합성 수율의 변화는 고분해능 주사전자현미경을 이용하여 관찰하였다. 그리고 합성된 SWNTs의 형태 및 결정성은 라만분광법과 원자간힘현미경을 이용하여 평가하였다. 결과적으로, 진행하였던 모든 합성 조건에서 반응기 중심보다 뒤의 영역에서 더 고수율의 SWNTs가 합성되었으며, 최적 합성 조건의 SWNTs 면밀도는 99% 이상이었다. 본 연구의 결과는 CVD 공정을 이용하는 다양한 저차원 나노 소재의 합성에도 적용될 수 있을 것으로 사료되며, 추후 이에 대한 연구가 필요하다.

  • PDF

Preparation of Carbon Nanotubes and Carbon Nanowires from Methane Pyrolysis over Pd/SPK Catalyst (Pd/SPK 촉매상에서 메탄의 열분해 반응으로부터 탄소 나노튜브 및 탄소 나노선의 제조)

  • Seo, Ho Joon;Kwon, Oh Yun
    • Applied Chemistry for Engineering
    • /
    • v.18 no.1
    • /
    • pp.94-97
    • /
    • 2007
  • Carbon nanotubes and nanowires were prepared by methane pyrolysis over Pd(5)/SPK catalyst by changing oxygen molar ratio in a fixed bed flow reactor under atmospheric condition and also analyzed by SEM and TEM. When the $CH_4/O_2$ molar ratio was 1, carbons were not almost deposited on the catalyst bed support, but when it was 2, carbons were deposited as much as plugging reactor. TEM and SEM images for the deposited carbons showed a number of single-walled carbon nanotubes and carbon nanowires. The growth mechanism of carbon nanotubes produced on the catalyst surface was the tip growth mode. It should be played an important role in carbon nanotubes and nanowires produced on the catalyst bed support to formate the carbon growth velocity vectors and nuclei of ring structure of carbon nanowires. SPK carrier was $N_2$ isotherm of IV type with mesopores, and excellent in the thermal stability.

Carbon Nanotube DNA Bioconjugates as Nano-Bio Markers (탄소 나노튜브와 DNA와의 결합을 통한 나노-바이오 마커 응용)

  • Hwang Eung-Soo;Chengfan Cao;Hong Sang-Hyun;Jung Hye-Jin;Cha Chang-Yong;Choi Jae-Boong;Kim Young-Jin;Baik Seung-Hyun
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.668-671
    • /
    • 2005
  • Carbon nanotubes exhibit strong fluorescence emissions in the region of near infrared regions where most biomolecules are transparent. Such signals are highly sensitive to environment variations as well as adsorption of specific biomolecules. In this research, single walled carbon nanotubes(SWNTs) are assembled with different types of DNAs and used to target specific types of DNAs. Dot blot investigations and corresponding raman spectroscopy observations demonstrated excellent selectivity of carbon nanotube-DNA bioconjugates. The results show possibility of using SWNT as generic nano-bio markers for precise detection of different kinds of genes.

  • PDF

Nano-Bio Applications Using Carbon Nanotube-Biomolecule Conjugates (탄소 나노튜브와 생체 분자와의 결합을 통한 나노-바이오 응용)

  • Mwang Eung-Soo;Cao Cheng-Fan;Hong Sang-Hyun;Jung Hye-Jin;Cha Chang-Yong;Choi Jac-Boons;Kim Young-Jin;Baik Seung-Hyun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.3 s.180
    • /
    • pp.179-186
    • /
    • 2006
  • Single-walled carbon nanotubes (SWNT) exhibit strong Raman signals as well as fluorescence emissions in the near infrared regions where most biomolecules are transparent. Such signals do not blink or photobleach under prolonged excitation. which is advantageous to optical nano-bio marker applications. In this paper, single walled carbon nanotubes are conjugated with specific types of single-stranded DNA in order to detect oligonucleotides of corresponding complimentary sequences. Dot blotting experiments and comparative Raman spectroscopy observations demonstrated excellent sensitivity and specificity of carbon nanotube-DNA probes. The results show the possibility of using SWNT as generic nano-bio markers for the precise detection of specific kinds of genes.

Processing - Interlaminar Shear Strength Relationship of Carbon Fiber Composites Reinforced with Carbon Nanotubes (탄소나노튜브로 보강된 탄소섬유복합재의 제조공정과 층간전단강도)

  • Kim, Han-Sang
    • Composites Research
    • /
    • v.24 no.5
    • /
    • pp.34-38
    • /
    • 2011
  • Carbon nanotubes (CNTs) have been widely investigated as reinforcements of CNT/polymer nanocomposites to enhance mechanical and electrical properties of polymer matrices since their discovery in the early 90's. Furthermore, the number of studies about incorporating CNTs into carbon fiber reinforced plastics (CFRP) to reinforce their polymer matrices is increasing recently. In this study, single-walled carbon nanotubes (SWNT) were dispersed in epoxy with 0.2 wt.% and 0.5 wt.%. Then, the SWNT/epoxy mixtures were processed to carbon fiber composites by a vacuum assisted resin transfer molding (VARTM) and a wet lay up method. The processed composite samples were tested for the interlaminar shear strength (ILSS). The relationship between the interlaminar shear strengths and processing, and the reinforcement mechanism of carbon nanotubes were investigated. CNT/epoxy nanocomposite specimens showed the increased tensile properties. However, the ILSS of carbon fiber composites was not enhanced by reinforcing the matrix with CNTs because of processing issues caused by increased viscosity of the matrix due to addition of CNTs particularly for a VARTM method.