• Title/Summary/Keyword: 단위신경망

Search Result 218, Processing Time 0.028 seconds

PCA 알고리즘과 개선된 퍼지 신경망을 이용한 여권 인식 및 얼굴 인증

  • Jung Byung-Hee;Park Choong-Shik;Kim Kwang-Baek
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2006.06a
    • /
    • pp.336-343
    • /
    • 2006
  • 본 논문에서는 여권 영 상에서 PCA 알고리즘을 이용한 얼굴 인증과 개선된 퍼지 신경망을 이용한 여권 코드 인식 방법을 제안한다. 본 논문에서는 여권영상에 대해 소벨 연산자를 이용하여 에지를 추출하고 에지가 추출된 영상을 수평 스미어링하여 여권코드 영역을 추출한다. 추출된 여권 코드 영역의 기울기를 검사하여 기울기 보정을 하고, 여권 코드 영역을 이진화 한다. 이진화된 여권 코드 영역에 대하여 8방향윤곽선 추적 알고리즘을 적용하여 여권 코드를 추출한다. 추출된 여권 코드는 퍼지 신경망을 개선하여 여권 코드 인식에 적용한다. 개선된 퍼지 신경 망은 입력층과 중간층 사이의 학습 구조로는 FCM 클러스터링 알고리즘을 적용하고 중간층과 출력층 사이의 학습은 일반화된 델타학습 방법을 적용한다. 그리고 학습 성능을 개선하기 위하여 중간층과 출력층의 가중치 조정에 적용되는 학습률을 동적으로 조정하기 위해 퍼지 제어 시스템을 적용한다. 제안된 퍼지 신경망은 목표값과 출력값의 차이에 대한 절대값이 ${\epsilon}$ 보다 적거나 같으면 정확으로 분류하고 크면 부정확으로 분류하여 정확의 총 개수를 퍼지 제어 시스템에 적용하여 학습률과 모멘텀을 동적으로 조정한다. 여권의 주어진 규격에 근거하여 사진 영역을 추출하고 추출된 사진 영역에 대하여 YCbCr와 RGB 정보를 이용하여 얼굴영역을 추출한다. 추출된 얼굴 영역을 PCA 알고리즘과 스냅샷(Snap-Shot) 방법을 적용하여 얼굴 영역의 위조를 판별한다. 제안된 방법의 여권 코드 인식과 얼굴 인증의 성능을 평가하기 위하여 실제 여권 영상에 적용한 결과, 기존의 방법보다 여권 코드 인식과 얼굴 인증에 있어서 효율적인 것을 확인하였다.s, whereas AVs provide much better security.크는 기준년도부터 2031년까지 5년 단위로 계획된 장래도로를 반영하여 구축된다. 교통주제도 및 교통분석용 네트워크는 국가교통DB구축사업을 통해 구축된 자료로서 교통체계효율화법 제9조의4에 따라 공공기관이 교통정책 및 계획수립 등에 활용할 수 있도록 제공하고 있다. 건설교통부의 승인절차를 거쳐 제공하며 활용 후에는 갱신자료 및 활용결과를 통보하는 과정을 거치도록 되어있다. 교통주제도는 국가의 교통정책결정과 관련분야의 기초자료로서 다양하게 활용되고 있으며, 특히 ITS 노드/링크 기본지도로 활용되는 등 교통 분야의 중요한 지리정보로서 구축되고 있다..20{\pm}0.37L$, 72시간에 $1.33{\pm}0.33L$로 유의한 차이를 보였으므로(F=6.153, P=0.004), 술 후 폐환기능 회복에 효과가 있다. 4) 실험군과 대조군의 수술 후 노력성 폐활량은 수술 후 72시간에서 실험군이 $1.90{\pm}0.61L$, 대조군이 $1.51{\pm}0.38L$로 유의한 차이를 보였다(t=2.620, P=0.013). 5) 실험군과 대조군의 수술 후 일초 노력성 호기량은 수술 후 24시간에서 $1.33{\pm}0.56L,\;1.00{\ge}0.28L$로 유의한 차이를 보였고(t=2.530, P=0.017), 술 후 72시간에서 $1.72{\pm}0.65L,\;1.33{\pm}0.3L$로 유의한 차이를 보였다(t=2.540, P=0.016). 6) 대상자의 술 후 폐환기능에 영향을 미치는 요인은 성별로 나타났다. 이에 따

  • PDF

A Comparative Study of Machine Learning Algorithms Based on Tensorflow for Data Prediction (데이터 예측을 위한 텐서플로우 기반 기계학습 알고리즘 비교 연구)

  • Abbas, Qalab E.;Jang, Sung-Bong
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.10 no.3
    • /
    • pp.71-80
    • /
    • 2021
  • The selection of an appropriate neural network algorithm is an important step for accurate data prediction in machine learning. Many algorithms based on basic artificial neural networks have been devised to efficiently predict future data. These networks include deep neural networks (DNNs), recurrent neural networks (RNNs), long short-term memory (LSTM) networks, and gated recurrent unit (GRU) neural networks. Developers face difficulties when choosing among these networks because sufficient information on their performance is unavailable. To alleviate this difficulty, we evaluated the performance of each algorithm by comparing their errors and processing times. Each neural network model was trained using a tax dataset, and the trained model was used for data prediction to compare accuracies among the various algorithms. Furthermore, the effects of activation functions and various optimizers on the performance of the models were analyzed The experimental results show that the GRU and LSTM algorithms yields the lowest prediction error with an average RMSE of 0.12 and an average R2 score of 0.78 and 0.75 respectively, and the basic DNN model achieves the lowest processing time but highest average RMSE of 0.163. Furthermore, the Adam optimizer yields the best performance (with DNN, GRU, and LSTM) in terms of error and the worst performance in terms of processing time. The findings of this study are thus expected to be useful for scientists and developers.

A study on discharge estimation for the event using a deep learning algorithm (딥러닝 알고리즘을 이용한 강우 발생시의 유량 추정에 관한 연구)

  • Song, Chul Min
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.246-246
    • /
    • 2021
  • 본 연구는 강우 발생시 유량을 추정하는 것에 목적이 있다. 이를 위해 본 연구는 선행연구의 모형 개발방법론에서 벗어나 딥러닝 알고리즘 중 하나인 합성곱 신경망 (convolution neural network)과 수문학적 이미지 (hydrological image)를 이용하여 강우 발생시 유량을 추정하였다. 합성곱 신경망은 일반적으로 분류 문제 (classification)을 해결하기 위한 목적으로 개발되었기 때문에 불특정 연속변수인 유량을 모의하기에는 적합하지 않다. 이를 위해 본 연구에서는 합성곱 신경망의 완전 연결층 (Fully connected layer)를 개선하여 연속변수를 모의할 수 있도록 개선하였다. 대부분 합성곱 신경망은 RGB (red, green, blue) 사진 (photograph)을 이용하여 해당 사진이 나타내는 것을 예측하는 목적으로 사용하지만, 본 연구의 경우 일반 RGB 사진을 이용하여 유출량을 예측하는 것은 경험적 모형의 전제(독립변수와 종속변수의 관계)를 무너뜨리는 결과를 초래할 수 있다. 이를 위해 본 연구에서는 임의의 유역에 대해 2차원 공간에서 무차원의 수문학적 속성을 갖는 grid의 집합으로 정의되는 수문학적 이미지는 입력자료로 활용했다. 합성곱 신경망의 구조는 Convolution Layer와 Pulling Layer가 5회 반복하는 구조로 설정하고, 이후 Flatten Layer, 2개의 Dense Layer, 1개의 Batch Normalization Layer를 배열하고, 다시 1개의 Dense Layer가 이어지는 구조로 설계하였다. 마지막 Dense Layer의 활성화 함수는 분류모형에 이용되는 softmax 또는 sigmoid 함수를 대신하여 회귀모형에서 자주 사용되는 Linear 함수로 설정하였다. 이와 함께 각 층의 활성화 함수는 정규화 선형함수 (ReLu)를 이용하였으며, 모형의 학습 평가 및 검정을 판단하기 위해 MSE 및 MAE를 사용했다. 또한, 모형평가는 NSE와 RMSE를 이용하였다. 그 결과, 모형의 학습 평가에 대한 MSE는 11.629.8 m3/s에서 118.6 m3/s로, MAE는 25.4 m3/s에서 4.7 m3/s로 감소하였으며, 모형의 검정에 대한 MSE는 1,997.9 m3/s에서 527.9 m3/s로, MAE는 21.5 m3/s에서 9.4 m3/s로 감소한 것으로 나타났다. 또한, 모형평가를 위한 NSE는 0.7, RMSE는 27.0 m3/s로 나타나, 본 연구의 모형은 양호(moderate)한 것으로 판단하였다. 이에, 본 연구를 통해 제시된 방법론에 기반을 두어 CNN 모형 구조의 확장과 수문학적 이미지의 개선 또는 새로운 이미지 개발 등을 추진할 경우 모형의 예측 성능이 향상될 수 있는 여지가 있으며, 원격탐사 분야나, 위성 영상을 이용한 전 지구적 또는 광역 단위의 실시간 유량 모의 분야 등으로의 응용이 가능할 것으로 기대된다.

  • PDF

A Study on Stock Trading Method based on Volatility Breakout Strategy using a Deep Neural Network (심층 신경망을 이용한 변동성 돌파 전략 기반 주식 매매 방법에 관한 연구)

  • Yi, Eunu;Lee, Won-Boo
    • The Journal of the Korea Contents Association
    • /
    • v.22 no.3
    • /
    • pp.81-93
    • /
    • 2022
  • The stock investing is one of the most popular investment techniques. However, since it is not easy to obtain a return through actual investment, various strategies have been devised and tried in the past to obtain an effective and stable return. Among them, the volatility breakout strategy identifies a strong uptrend that exceeds a certain level on a daily basis as a breakout signal, follows the uptrend, and quickly earns daily returns. It is one of the popular investment strategies that are widely used to realize profits. However, it is difficult to predict stock prices by understanding the price trend pattern of stocks. In this paper, we propose a method of buying and selling stocks by predicting the return in trading based on the volatility breakout strategy using a bi-directional long short-term memory deep neural network that can realize a return in a short period of time. As a result of the experiment assuming actual trading on the test data with the learned model, it can be seen that the results outperform both the return and stability compared to the existing closing price prediction model using the long-short-term memory deep neural network model.

Korean Named Entity Recognition based on ELECTRA with CRFs (ELECTRA-CRFs 기반 한국어 개체명 인식기)

  • Hong, Jiyeon;Kim, Hyunwoo J
    • Annual Conference on Human and Language Technology
    • /
    • 2020.10a
    • /
    • pp.473-476
    • /
    • 2020
  • 개체명 인식에 적용된 대부분의 신경망 모델들에서 CRFs와 결합을 통해 성능 향상을 하였다. 그러나 최근 대용량 데이터로 사전 학습한 모델을 활용하는 경우, 기 학습된 많은 유의미한 파라미터들로 인해 CRFs의 영향력이 비교적 작아졌다. 따라서 본 논문에서는 한국어 대용량 말뭉치로 사전 학습한 ELECTRA 모델에서의 CRFs 가 개체명 인식에 미치는 영향을 확인해보고자 한다. 모델의 입력 단위로 음절 단위와 Wordpiece 단위로 사전 학습된 두 가지의 모델을 사용하여 미세 조정을 통해 개체명 인식을 학습하였다. 실험을 통해서 두 모델에 대하여 각각 CRFs 층의 유무에 따른 성능을 비교해 보았다. 그 결과로 ELECTRA 기반으로 사전 학습된 모델에서 CRFs를 통한 F1-점수 향상을 보였다.

  • PDF

Run-off Forecasting using Distributed model and Artificial Neural Network model (분포형 모형과 인공신경망을 활용한 유출 예측)

  • Kim, Won Jin;Lee, Yong Gwan;Jung, Chung Gil;Kim, Seong Joon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.35-35
    • /
    • 2019
  • 본 연구에서는 분포형 수문 모형 Drying Stream Assessment Tool and Water Flow Tracking (DrySAT-WTF)을 활용해 우리나라의 1976년부터 2015년까지의 유출량을 산정하고, 이를 다층퍼셉트론(Multi Layer Perceptron) 인경신경망 모형(Artificial Neural Network Model)에 적용해 미래 유출을 예측하였다. DrySAT-WFT은 전국 표준 유역을 대상으로 하천 건천화 원인 추적 및 평가를 위해 개발된 모형으로 유출모의를 위한 기상자료 외에 건천화 영향 요소를 고려하기 위한 산림 높이, 도로망, 지하수 이용량, 토지이용, 토심 변화에 대한 DB를 적용 가능한 것이 특징이다. DrySAT-WFT를 위한 기상자료로 모의 기간에 대한 일별 강우량, 상대습도, 평균풍속, 평균 및 최고, 최저 기온, 일조시간을 구축하였으며, 연대별 건천화 영향 요소 DB를 구축하여 적용하였다. 전국 다목적 댐 보 12지점의 유량을 활용해 모형의 보정(2005-2010) 및 검증(2011-2015)을 실시한 결과, 평균 결정계수(Coefficient of determination, $R^2$)는 0.76, 모형효율성계수(Nash-Sutcliffe efficiency, NSE)는 0.62, 평균제곱근오차(average root mean square error, RMSE)는 3.09로 신뢰성 있는 유출 모의 결과를 나타내었다. 미래 유출량 예측을 위한 MLP-ANN은 1976년부터 2015년까지의 유출 모의 결과를 Training Set으로 훈련하여 $R^2$가 0.5 이상이 되어 신뢰성을 확보하였고, 2016년부터 2018년까지의 기간을 1개월 단위로 실제 유출량과 예측 유출량을 비교하며 적용성을 검증 및 향상시켰다.

  • PDF

Development and Validation of the Letter-unit based Korean Sentimental Analysis Model Using Convolution Neural Network (회선 신경망을 활용한 자모 단위 한국형 감성 분석 모델 개발 및 검증)

  • Sung, Wonkyung;An, Jaeyoung;Lee, Choong C.
    • The Journal of Society for e-Business Studies
    • /
    • v.25 no.1
    • /
    • pp.13-33
    • /
    • 2020
  • This study proposes a Korean sentimental analysis algorithm that utilizes a letter-unit embedding and convolutional neural networks. Sentimental analysis is a natural language processing technique for subjective data analysis, such as a person's attitude, opinion, and propensity, as shown in the text. Recently, Korean sentimental analysis research has been steadily increased. However, it has failed to use a general-purpose sentimental dictionary and has built-up and used its own sentimental dictionary in each field. The problem with this phenomenon is that it does not conform to the characteristics of Korean. In this study, we have developed a model for analyzing emotions by producing syllable vectors based on the onset, peak, and coda, excluding morphology analysis during the emotional analysis procedure. As a result, we were able to minimize the problem of word learning and the problem of unregistered words, and the accuracy of the model was 88%. The model is less influenced by the unstructured nature of the input data and allows for polarized classification according to the context of the text. We hope that through this developed model will be easier for non-experts who wish to perform Korean sentimental analysis.

Analyzing the Impact of Multivariate Inputs on Deep Learning-Based Reservoir Level Prediction and Approaches for Mid to Long-Term Forecasting (다변량 입력이 딥러닝 기반 저수율 예측에 미치는 영향 분석과 중장기 예측 방안)

  • Hyeseung Park;Jongwook Yoon;Hojun Lee;Hyunho Yang
    • The Transactions of the Korea Information Processing Society
    • /
    • v.13 no.4
    • /
    • pp.199-207
    • /
    • 2024
  • Local reservoirs are crucial sources for agricultural water supply, necessitating stable water level management to prepare for extreme climate conditions such as droughts. Water level prediction is significantly influenced by local climate characteristics, such as localized rainfall, as well as seasonal factors including cropping times, making it essential to understand the correlation between input and output data as much as selecting an appropriate prediction model. In this study, extensive multivariate data from over 400 reservoirs in Jeollabuk-do from 1991 to 2022 was utilized to train and validate a water level prediction model that comprehensively reflects the complex hydrological and climatological environmental factors of each reservoir, and to analyze the impact of each input feature on the prediction performance of water levels. Instead of focusing on improvements in water level performance through neural network structures, the study adopts a basic Feedforward Neural Network composed of fully connected layers, batch normalization, dropout, and activation functions, focusing on the correlation between multivariate input data and prediction performance. Additionally, most existing studies only present short-term prediction performance on a daily basis, which is not suitable for practical environments that require medium to long-term predictions, such as 10 days or a month. Therefore, this study measured the water level prediction performance up to one month ahead through a recursive method that uses daily prediction values as the next input. The experiment identified performance changes according to the prediction period and analyzed the impact of each input feature on the overall performance based on an Ablation study.

The Recognition of Vehicle Plate`s Korean Character Using Grapheme Segmentation (자소 분리 방법을 이용한 차량번호판의 용도구분 문자 인식)

  • 김성우;강동구;박재현;차의영
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2002.04b
    • /
    • pp.646-648
    • /
    • 2002
  • 본 논문에서는 차량번호판의 용도구분 문자를 자소 단위로 분리하는 효율적인 방법을 제안하고, 신경망을 이용하여 자소를 인식하는 방법을 소개한다. 용도구분 문자(가, 거, 나, 너‥‥)는 실제 번호판의 훼손, 카메라의 성능, 기타 여러 가지 조건에 의해서 번호판 영상에 많은 잡영이 포함된다. 따라서 차량번호판 한글문자를 자소분리하는 것은 어려운 작업이다. 제안하는 이진 영상처리 기법(morphological operation, connected component labeling 등) 으로 분리된 자소가 인식시스템으로의 입력벡터로 입력되었을 때 높은 인식률을 보이는 것을 실험을 통하여 확인하였다

  • PDF

Online Character Recognition System on Hand-held PC (HPC상에서의 온라인 한글 인식기의 구현)

  • Kang, Hyun;Kim, Hang-Joon
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 1998.10c
    • /
    • pp.378-380
    • /
    • 1998
  • 최근의 HPC같은 초소형 컴퓨터의 발달은 더 자연스럽고 더 사용하기 편한 입출력 시스템을 요구하게 되었다. 본 논문에서는 HPC상에서의 흘림한글을 인식할 수 있는 인식 시스템을 구현한 것을 주제로 하였다. 본 시스템은 획을 인식의 기본 단위로 취급하며, 획 인식을 위하여 ART-1신경망을 사용하였으며, 글자인식을 위해 HMM의 각 스테이트를 탐색하는 방법을 사용하였다. 본 논문에서는 이 시스템을 HPC상에서 구현하였고 좋은 실험결과를 얻었다.

  • PDF