• Title/Summary/Keyword: 단위신경망

Search Result 218, Processing Time 0.026 seconds

Generative Korean Inverse Text Normalization Model Combining a Bi-LSTM Auxiliary Model (Bi-LSTM 보조 신경망 모델을 결합한 생성형 한국어 Inverse Text Normalization 모델)

  • Jeongje Jo;Dongsu Shin;Kyeongbin Jo;Youngsub Han;Byoungki Jeon
    • Annual Conference on Human and Language Technology
    • /
    • 2023.10a
    • /
    • pp.716-721
    • /
    • 2023
  • Inverse Text Normalization(ITN) 모델은 음성 인식(STT) 엔진의 중요한 후처리 영역 중 하나이며, STT 인식 결과의 가독성을 개선한다. 최근 ITN 모델에 심층신경망을 활용한 연구가 진행되고 있다. 심층 신경망을 사용하는 대부분의 선행연구는 문장 내 변환이 필요한 부분에 토큰 태깅을 진행하는 방식이다. 그러나 이는 Out-of-vocabulary(OOV) 이슈가 있으며, 학습 데이터 구축 시 토큰 단위의 섬세한 태깅 작업이 필요하다는 한계점이 존재한다. 더불어 선행 연구에서는 STT 인식 결과를 그대로 사용하는데, 이는 띄어쓰기가 중요한 한국어 ITN 처리에 변환 성능을 보장할 수 없다. 본 연구에서는 BART 기반 생성 모델로 생성형 ITN 모델을 구축하였고, Bi-LSTM 기반 보조 신경망 모델을 결합하여 STT 인식 결과에 대한 고유명사 처리, 띄어쓰기 교정 기능을 보완한 모델을 제안한다. 또한 보조 신경망을 통해 생성 모델 처리 여부를 판단하여 평균 추론 속도를 개선하였다. 실험을 통해 두 모델의 각 정량 성능 지표에서 우수한 성능을 확인하였고 결과적으로 본 연구에서 제안하는 두 모델의 결합된 방법론의 효과성을 제시하였다.

  • PDF

Prediction of Long-term Runoff for Hapcheon Dam Watershed through Multi-Artificial Neural Network Downscaling of KMA's RCM (기상청 RCM전망의 다지점 인공신경망 상세화를 통한 합천댐 유역의 장기유출 전망)

  • Kang, Boo-Sik;Moon, Su-Jin;Kim, Jung-Joong
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.948-948
    • /
    • 2012
  • 합천댐유역에 대한 기후변화에 따른 수문학적 영향을 정량적으로 분석하기 위해, 기상청에서 제공하는 공간해상도 27km의 MM5 RCM(Regional Climate Model)을 사용하였다. RCM의 기상변수들은 공간적 스케일의 상이성과 RCM 기후변수들의 불확실성 때문에 유출모형인 SWAT의 입력자료로 사용하기에는 어려움이 있다. 특히, RCM 변수들 중 강수량의 경우 한반도 지역의 6월과 10월 사이에 연강수량의 67%이상이 집중되는 계절성을 반영하지 못하고 있는 실정이기 때문에 국내 유역의 유출량 산정에 사용하기 위해서는 지역적 상세화(Downscaling)가 필요하다. 본 연구에서는 RCM 기후변수에 내포된 공간적 스케일의 상이성과 불확실성을 최소화하기 위해 강우관측소 지점을 단위로 한 다지점 인공신경망 기법을 적용하여 강수량, 습도, 최고기온 및 최저기온에 대한 상세화를 실시하였다. 강수의 경우 여름철 태풍사상을 모의하기 위한 Stochastic Typhoon Simulation기법과 Baseline(1991~2010)과 Projection(2011~2100) 사이의 강수량 보정을 위한 Dynamic Quantile Mapping 기법을 적용하여, 강수량의 불확실성을 최소화 하고자 하였다. 상세화된 기후자료를 이용한 SWAT 모형의 일(Daily) 단위 강우-유출 모의결과를 2011~2040년, 2041~2070년, 2071~2100년으로 구분하여 추세분석을 실시하였다.

  • PDF

Satellite Land Cover Map Generation Using Deep Learning (딥러닝을 이용한 인공위성영상의 토지피복지도 생성기술)

  • Kim, Youngeun;Lee, Hyukzae;Park, Hyoungseob;Ryu, Kwangsun;Kim, Changick
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2019.06a
    • /
    • pp.240-242
    • /
    • 2019
  • 본 논문에서는 대한민국 국토에 대한 토지피복지도를 인공위성 영상으로부터 생성하는 기술을 제안한다. 제안하는 방법은 먼저 합성곱 신경망을 이용하여 인공위성 영상의 각 패치를 4 종류의 토지 용도로 분류한다. 이후 인공위성 영상과 토지 용도 분류 결과를 조건부 랜덤 필드에 적용하여 픽셀 단위로 색상과 질감이 유사한 영역을 같은 토지 용도로 분류될 수 있도록 하여 정확한 토지피복지도를 생성한다. 현재 대한민국 국토에 대한 토지피복지도 생성을 위해 구축된 데이터 세트가 없기 때문에 본 연구에서는 합성곱 신경망 학습을 위한 데이터 세트를 직접 구축하였다. 이를 위해 환경공간정보 서비스 웹사이트로부터 인공위성 영상을 취득하고, 각 영상을 패치 단위로 나누어 토지 용도를 직접 분류하였다. 실험 결과를 통해 제안하는 토지 용도 분류 합성곱 신경망의 성능을 평가하였으며, 최종 생성된 토지피복지도는 제안하는 방법이 효과적으로 토지 용도를 분류할 수 있음을 나타낸다.

  • PDF

Segment unit shuffling layer in deep neural networks for text-independent speaker verification (문장 독립 화자 인증을 위한 세그멘트 단위 혼합 계층 심층신경망)

  • Heo, Jungwoo;Shim, Hye-jin;Kim, Ju-ho;Yu, Ha-Jin
    • The Journal of the Acoustical Society of Korea
    • /
    • v.40 no.2
    • /
    • pp.148-154
    • /
    • 2021
  • Text-Independent speaker verification needs to extract text-independent speaker embedding to improve generalization performance. However, deep neural networks that depend on training data have the potential to overfit text information instead of learning the speaker information when repeatedly learning from the identical time series. In this paper, to prevent the overfitting, we propose a segment unit shuffling layer that divides and rearranges the input layer or a hidden layer along the time axis, thus mixes the time series information. Since the segment unit shuffling layer can be applied not only to the input layer but also to the hidden layers, it can be used as generalization technique in the hidden layer, which is known to be effective compared to the generalization technique in the input layer, and can be applied simultaneously with data augmentation. In addition, the degree of distortion can be adjusted by adjusting the unit size of the segment. We observe that the performance of text-independent speaker verification is improved compared to the baseline when the proposed segment unit shuffling layer is applied.

An Implementation of Neural Networks Intelligent Characters for Fighting Action Games (대전 액션 게임을 위한 신경망 지능 캐릭터의 구현)

  • Cho, Byeong-Heon;Jung, Sung-Hoon;Seong, Yeong-Rak;Oh, Ha-Ryoung
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.4
    • /
    • pp.383-389
    • /
    • 2004
  • This paper proposes a method to provide intelligence for characters in fighting action games by using a neural network. Each action takes several time units in general fighting action games. Thus the results of a character's action are not exposed immediately but some time units later. To design a suitable neural network for such characters, it is very important to decide when the neural network is taught and which values are used to teach the neural network. The fitness of a character's action is determined according to the scores. For learning, the decision causing the score is identified, and then the neural network is taught by using the score change, the previous input and output values which were applied when the decision was fixed. To evaluate the performance of the proposed algorithm, many experiments are executed on a simple action game (but very similar to the actual fighting action games) environment. The results show that the intelligent character trained by the proposed algorithm outperforms random characters by 3.6 times at most. Thus we can conclude that the intelligent character properly reacts against the action of the opponent. The proposed method can be applied to various games in which characters confront each other, e.g. massively multiple online games.

Automatic segmentation for continuous spoken Korean language recognition based on phonemic TDNN (음소단위 TDNN에 기반한 한국어 연속 음성 인식을 위한 데이타 자동분할)

  • Baac, Coo-Phong;Lee, Geun-Bae;Lee, Jong-Hyeok
    • Annual Conference on Human and Language Technology
    • /
    • 1995.10a
    • /
    • pp.30-34
    • /
    • 1995
  • 신경망을 이용하는 연속 음성 인식에서 학습이라 함은 인위적으로 분할된 음성 데이타를 토대로 진행되는 것이 지배적이었다. 그러나 분할된 음성데이타를 마련하기 위해서는 많은 시간과 노력, 숙련 등을 요구할 뿐만아니라 그 자체가 인식도메인의 변화나 확장을 어렵게 하는 하나의 요인 되기도 한다. 그래서 분할된 음성데이타의 사용을 가급적 피하고 그러면서도 성능을 떨어뜨리지 않는 신경망 학습법들이 나타나고 있다. 본 논문에서는 학습된 인식기를 이용하여 자동으로 한국어 음성데이타를 분할한 후 그 분할된 데이타를 이용하여 다시 인식기를 재학습시켜나가는 반복 과정을 소개하고자 한다. 여기에는 TDNN이 인식기로 사용되며 인식단위는 음소이다. 학습은 cross-validation 기법을 이용하여 제어된다.

  • PDF

A Method of Machine-Printed Hangul Recognition using Character and Combined-Grapheme Recognizers (낱자 인식기와 자소 조합 인식기를 혼용한 인쇄체 한글 인식방법)

  • 장승익;임길택;김호연;정선화;남윤석
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2003.04c
    • /
    • pp.244-246
    • /
    • 2003
  • 본 논문에서는 낱자 인식기와 자소 조합 인식기를 혼용한 저품질 인쇄체 한글의 고성능 인식 방법을 제안하였다. 제안한 방법에서는 입력 문자를 한글 6형식과 기타 형식의 문자, 총 7종으로 분류한, 입력문자를 인식 대상 문자의 수와 자소 복잡도에 따라 하나 또는 두 개의 인식 단위(HRU: Hangul recognition unit)로 분리하여 인식한다. 각 인식 단위 영상에서 추출한 방향각 특징을 다층신경망 인식기를 이용하여 인식한다. 다음으로, 각 다층신경망 인식기의 신뢰도를 조합하여 최종 인식 결과를 도출한다. 제안한 방법을 사용한 실험에서 98.80%의 인식률을 얻을 수 있었으며, 이는 기존 방법에 비해 23.61%의 오류가 감소한 것이다.

  • PDF

A Discourse-based Compositional Approach to Overcome Drawbacks of Sequence-based Composition in Text Modeling via Neural Networks (신경망 기반 텍스트 모델링에 있어 순차적 결합 방법의 한계점과 이를 극복하기 위한 담화 기반의 결합 방법)

  • Lee, Kangwook;Han, Sanggyu;Myaeng, Sung-Hyon
    • KIISE Transactions on Computing Practices
    • /
    • v.23 no.12
    • /
    • pp.698-702
    • /
    • 2017
  • Since the introduction of Deep Neural Networks to the Natural Language Processing field, two major approaches have been considered for modeling text. One method involved learning embeddings, i.e. the distributed representations containing abstract semantics of words or sentences, with the textual context. The other strategy consisted of composing the embeddings trained by the above to get embeddings of longer texts. However, most studies of the composition methods just adopt word embeddings without consideration of the optimal embedding unit and the optimal method of composition. In this paper, we conducted experiments to analyze the optimal embedding unit and the optimal composition method for modeling longer texts, such as documents. In addition, we suggest a new discourse-based composition to overcome the limitation of the sequential composition method on composing sentence embeddings.

A Study on Downscaling of GCM output using Artificail Neural Network in Soyang River Basin (인공신경망 모델을 이용한 소양강 유역의 GCM 모의결과 상세화 기법에 대한 연구)

  • Lee, Kyoung-Joo;Sung, Kyung-Min;Kim, Soo-Young;Heo, Jun-Haeng
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2010.05a
    • /
    • pp.847-850
    • /
    • 2010
  • 최근 많은 수문학자들은 전지구적 기후변화로 인한 피해 예방과 저감을 위해 기후변화가 수문학적으로 어떤 영향을 미치고 있는지 알기 위해 많은 연구를 진행하고 있으며, 기후변화시나리오를 작성하고자 이산화탄소 배출농도를 가정하여 다양한 시나리오를 생성하고 있다. 본 연구에서는 효율적인 수자원 관리를 위해 저해상도의 GCM(General Circulation Models) 모형에서 생성되는 모의결과를 유역 규모의 단위로 스케일 상세화 기법(downscaling)을 적용 시켜 보고자 한다. 이를 위해 2007년 IPCC AR4와 함께 제시된 SRES A1B 시나리오를 채택하여 우리나라 기상청이 연구에 참여 제공하고 있는 EHCO-G 모델의 모의결과를 이용하여 소양강 유역에 적용하였다. 상세화 기법으로는 현재와 과거의 입력값들과 이에 대응된 출력값들을 알고 있는 경우에 미래의 새로운 입력값들에 대한 예측값들을 추출하는데 유용하며, 비선형적 비연속적인 특성이 강한 모델에 강점을 가지고 있는 인공신경망(Artificial Neural Network) 모델을 사용하고자 한다.

  • PDF

Edge Estimation of Event Data Using Recurrent Neural Network (재귀 신경망 기반 이벤트 영상의 엣지 추정)

  • Paek, Seunghan;Park, Jong-Il
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2021.06a
    • /
    • pp.195-199
    • /
    • 2021
  • 본 논문에서는 재귀 신경망을 통해 동적 비전 센서 (DVS: Dynamic Vision Sensor)의 출력에서 엣지를 추정하는 방법을 제안한다. 동적 비전 센서는 기존의 일반적인 카메라들과 달리 급격한 움직임이나 밝기 변화에 강인하게 동작한다. 그러나 동적 비전 센서에서 획득한 출력은 각각이 독립적이기 때문에 화소들의 상관관계를 이용한 알고리즘을 사용함에 어려움이 따른다. 제안하는 방법은 센서에서 획득한 출력을 일정한 시간단위로 분할하고 2차원 평면에 투영함으로써 출력의 정보량 및 상관관계를 향상시키고, 이를 재귀 신경망에 통과시켜 엣지 정보를 추정한다. 이 방법은 센서의 출력에 의해 형성된 패턴을 학습하여 엣지를 잘 추출하였으며, 기존의 컴퓨터 비전 알고리즘의 적용 및 시각 관성 측위 등의 분야에서 활용될 수 있다.

  • PDF