• Title/Summary/Keyword: 단위모델

Search Result 2,104, Processing Time 0.033 seconds

KACTEIL-NER: Named Entity Recognizer Using Deep Learning and Ensemble Technique (KACTEIL-NER: 딥러닝과 앙상블 기법을 이용한 개체명 인식기)

  • Park, Geonwoo;Park, Seongsik;Jang, Yoengjin;Choi, Kihyoen;Kim, Harksoo
    • 한국어정보학회:학술대회논문집
    • /
    • 2017.10a
    • /
    • pp.324-326
    • /
    • 2017
  • 개체명 인식은 입력 문장에서 인명, 지명, 기관명, 날짜, 시간 등과 같은 고유한 의미를 갖는 단어 열을 찾아 범주를 부착하는 기술이다. 기존의 연구에서는 단어 단위나 음절 단위를 입력으로 사용하였다. 하지만 단어 단위의 경우 미등록어 처리가 어려우며 음절 단위의 경우 단어 고유의 의미가 희석되는 문제가 발생한다. 이러한 문제들을 해결하기 위해 본 논문에서는 형태소 단위 개체명 인식기와 음절 단위 개체명 인식기를 앙상블하여 보정된 결과를 예측하는 개체명 인식기를 제안한다. 제안된 모델은 각각의 단일 입력 모델보다 향상된 F1-점수(0.8049)를 보였다.

  • PDF

Improving dam inflow prediction in LSTM-s2s model with luong attention (Attention 기법을 통한 LSTM-s2s 모델의 댐유입량 예측 개선)

  • Jonghyeok Lee;Yeonjoo Kim
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.226-226
    • /
    • 2023
  • 하천유량, 댐유입량 등을 예측하기 위해 다양한 Long Short-Term Memory (LSTM) 방법들이 활발하게 적용 및 개발되고 있다. 최근 연구들은 s2s (sequence-to-sequence), Attention 기법 등을 통해 LSTM의 성능을 개선할 수 있음을 제시하고 있다. 이에 따라 본 연구에서는 LSTM-s2s와 LSTM-s2s에 attention까지 첨가한 모델을 구축하고, 시간 단위 자료를 사용하여 유입량 예측을 수행하여, 이의 실제 댐 운영에 모델들의 활용 가능성을 확인하고자 하였다. 소양강댐 유역을 대상으로 2013년부터 2020년까지의 유입량 시자료와 종관기상관측기온 및 강수량 데이터를 학습, 검증, 평가로 나누어 훈련한 후, 모델의 성능 평가를 진행하였다. 최적 시퀀스 길이를 결정하기 위해 R2, RRMSE, CC, NSE, 그리고 PBIAS을 사용하였다. 분석 결과, LSTM-s2s 모델보다 attention까지 첨가한 모델이 전반적으로 성능이 우수했으며, attention 첨가 모델이 첨두값 예측에서도 높은 정확도를 보였다. 두 모델 모두 첨두값 발생 동안 유량 패턴을 잘 반영하였지만 세밀한 시간 단위 변화량 패턴 모의에는 한계가 있었다. 시간 단위 예측의 한계에도 불구하고, LSTM-s2s에 attention까지 추가한 모델은 향후 댐유입량 예측에 활용될 수 있을 것으로 판단한다.

  • PDF

정밀묘사 전투모델 특성 및 운용

  • 박래윤
    • Proceedings of the Korea Society for Simulation Conference
    • /
    • 2001.05a
    • /
    • pp.124-124
    • /
    • 2001
  • 한국군 워게임에서 사용되고 있는 시뮬레이션 모델은 주로 대부대 훈련 및 분석용 모델이 주류를 이루고 있다. 대부대 전투모델은 전투요소를 부대단위로 통합하여 부대를 모의 실체(entity)로 설정하고 부대 대 부대의 교전상황을 개략적으로 묘사하므로 개별무기체계의 성능 및 효과분석을 필요로 하는 정밀 전투실험이나 연구개발 및 획득분야의 적용에 많은 제한을 받게 된다. 이러한 대부대 개략묘사 전투모델과 대조적인 개념의 정밀묘사 전투모델은 단위무기체계별 교전상황을 상세하게 묘사하므로 주로 소부대 전장환경을 대상으로 하는 전투모의에서 활용된다. 최근 군사선진국에서는 국방환경의 변화와 함께 교육훈련 분야에서 합성전장 개념에 의한 과학화 훈련을 추진하고 있는데, 이러한 분야에서 사용되는 전투모델도 보다 상세한 시스템의 상호작용 묘사가 필요하므로 정밀묘사 기법을 적용하여 개발되어야 한다. 현재 국내에서 운용되고 있는 대표적인 정밀묘사 전투모델은 JANUS 모델과 EADSIM 모델을 예로 들 수 있지만, EADSIM 모델은 최근에 도입되어 실용화 연구 중에 있기 때문에 실제로는 한국국방연구원에서 운용하고 있는 JANUS 모델이 유일하다고 할 수 있다. 따라서 본 고에서는 먼저 전투모델 분류방법 고찰을 통하여 정밀묘사 모델의 특성을 분석하고 한국군 정밀묘사 전투모델의 운용실태와 함께 한국형 정밀묘사 모델 개발전략을 모색하기로 한다.

  • PDF

A preliminary study on lexical access and phonological processing in written word recognition (한글 단어 인지과정에서 음운적 처리와 어휘접근)

  • Yi, Kwang-Oh
    • Annual Conference on Human and Language Technology
    • /
    • 1989.10a
    • /
    • pp.92-95
    • /
    • 1989
  • 단어 인지과정은 언어 이해과정의 한 부분으로, 신속성과 정확성 그리고 심성어휘집을 그 특정으로 한다. 표기 단어의 인지과정에는 그 언어의 정서법 체계가 반영된다. 한국어의 단어 인지과정에 대한 모델 작성의 예비 연구로 음운적 처리와 어휘 근접에서의 정서법적 정보의 역활에 대해 검토하였다. 어휘 근접의 단위에 대한 논의에서는 음절, 자질, 단어등의 형식적 언어학적 단위외에 심리적 단위가 고려되어야 함이 지적되었으며, 그 심리적 단위들과 정서법의 관계에 대해 논의하였다. 마지막으로 한글 단어 인지과정에 관한 한 모델로서 상호작용 활성화 모델의 가능성에 주목하였다.

  • PDF

Automatic Back-Transliteration from Foreign Word to English Word (음차표기된 외래어의 발음특성을 이용한 자동 영어단어 복원)

  • 이상율;강인수;나승훈;이종혁
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2003.04c
    • /
    • pp.525-527
    • /
    • 2003
  • 음차 표기된 외래어의 원어 복원 문제에 있어서 확률모델을 이용한 방법들이 기존에 많이 사용되었다. 이는‘발음단위’개념 (이재성 1998)을 이용하여 서로 대응될 수 있는 한글발음단위와 영어발음단위의 쌍들을 대역어 집합으로부터 추출하고 이를 확률모델에 적용하는 방법이다. 하지만 영어 철자를 영어 발음단위로 변환하는 과정에서 그 단어의 어원에 따라 서로 다른 발음상의 특징을 보이게 되는데. 이것이 기존의 연구에서 성능을 떨어뜨리는 원인이 되었다. 따라서 본 논문에서는 학습 데이터(대역어 집합)들을 발음 특성에 따라 분류하고. 분류된 각 데이터 집합을 학습과정에서 따로 적용함으로써 서로 다른 특성을 가지는 여러 개의 복원 모델을 얻을 수 있고, 이를 이용하여 원어 복원에 대한 성능을 높일 수 있음을 보여준다.

  • PDF

A Study on the Multiple Pronunciation Dictionary for Spontaneous Speech Recognition (대화체 연속음성인식을 위한 확장 다중발음 사전에 관한 연구)

  • Kang ByungOk
    • Proceedings of the KSPS conference
    • /
    • 2003.10a
    • /
    • pp.65-68
    • /
    • 2003
  • 본 논문에서는 대화체 연속음성인식 과정에서 사용되는 다중발음사전의 개념을 확장하여 대화체 발화에 빈번하게 나타나는 불규칙한 발음변이 현상을 포용하도록 한 확장된 발음사전의 방법을 적용하여 대화체 연속음성인식에서 인식성능의 향상을 가져오게 됨을 실험을 통해 보여준다. 대화체 음성에서 빈번하게 나타나는 음운축약 및 음운탈락, 전형적인 오발화, 양성음의 음성음화 등의 발음변이는 언어모델의 효율성을 떨어뜨리고 어휘 수를 증가시켜 음성인식의 성능을 저하시키고, 또한 음성인식 결과로 나타나는 출력형태가 정형화되지 못하는 단점을 가지고 있다. 이에 이러한 발음변이들을 발음사전에 수용할 때 각각의 대표어휘에 대한 변이발음으로 처리하고, 언어모델과 어휘사전은 대표어휘만을 이용해 구성하도록 한다. 그리고, 음성인식기의 탐색부에서는 각각의 변이발음의 발음열도 탐색하되 대표어휘로 언어모델을 참조하도록 하고, 인식결과를 출력하도록 하여 결과적으로 인식성능을 향상시키고, 정형화된 출력패턴을 얻도록 한다. 본 연구에서는 어절단위 뿐 아니라 의사형태소[2] 단위의 발음사전에도 발음변이를 포용하도록 하여 실험을 하였다. 실험을 통해 어절단위의 다중발음사전 구성을 통해 ERR 10.9%, 의사형태소 단위의 다중발음 사전의 구성을 통해 ERR 4.3%의 성능향상을 보였다.

  • PDF

BERT with subword units for Korean Morphological Analysis (BERT에 기반한 Subword 단위 한국어 형태소 분석)

  • Min, Jin-Woo;Na, Seung-Hoon;Sin, Jong-Hun;Kim, Young-Kil
    • Annual Conference on Human and Language Technology
    • /
    • 2019.10a
    • /
    • pp.37-40
    • /
    • 2019
  • 한국어 형태소 분석은 입력된 문장 내의 어절들을 지니는 최소의 단위인 형태소로 분리하고 품사 부착하는 작업을 의미한다. 기존 한국어 형태소 분석 방법은 음절 기반 연구가 주를 이루고 이를 순차 태깅 문제로 보고 SVM, CRF혹은 Bi-LSTM-CRF 등을 이용하거나 특정 음절에서 형태소의 경계를 결정하는 전이 기반 모델을 통해 분석하는 모델 등이 연구되었다. 최근 자연어 처리 연구에서 대용량 코퍼스로부터 문맥을 고려한 BERT 등의 언어 모델을 활용한 연구가 각광받고 있다. 본 논문에서는 음절 단위가 아닌 BERT를 이용한 Sub-word 기반 형태소 분석 방법을 제안하고 기분석 사전을 통해 분석하는 과정을 거쳐 세종 한국어 형태소 분석 데이터 셋에서 형태소 단위 F1 : 95.22%, 어절 정확도 : 93.90%의 성능을 얻었다.

  • PDF

A Study on Methods of Speacker Adaptation for Speech Recognition (음성인식을 위한 화자적응화 기법에 관한 연구)

  • 이종연
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1998.06e
    • /
    • pp.309.2-314
    • /
    • 1998
  • 본 연구에서는 음성인식을 위한 화자적응화 기법에 대해 연구하였다. 첫째로 적응화에 포함되지 않은 카테고리 음절에 대해 적응화 효과를 줄 수 있는 보간적응화 방법에 대해 연구하였다. 표준모델과 소량의 음성 데이터만으로 적응화가 가능한 MAPE(최대사후확률추정)으로 적응화한 모델의 평균벡터 변화정도를 적응화 발화에 포함되지 않은 모델에 보간적응하는 방법이다. 둘째로 음절단위 모델을 구축한 후 적응화 하고자 하는 화자의 데이터를 연결학습법과 Viterbi 알고리즘으로 음절단위의 추출을 자동화 한 후 MAPE으로 적응화하는 방법에 대해 각각 실험을 하였다.

  • PDF

Implementation of Automatic Phoneme Labelling System Using Context-dependent Demi-phone Unit and Performance Evaluation (문맥종속 반음소단위에 의한 자동 음운 레이블링 시스템의 구현 및 성능평가)

  • Park Soon-Cheol;Kim Tae-Hwan;Kim Bong-Wan;Lee Yong-Ju
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • autumn
    • /
    • pp.65-70
    • /
    • 1999
  • 음소 단위로 레이블링된 데이터베이스는 음성연구에 있어 매우 중요하다. 그러나 수작업에 의한 음소분할 및 레이블링 작업은 많은 시간과 노력이 필요하기 때문에 자동 음소분할 및 레이블링 시스템에 대한 많은 연구가 진행되고 있다. 저자들은 자동레이블링 시스템에서 레이블링 분할의 단위로monophone과 triphone의 장점을 포함하는 문맥 종속 반음소 단위 모델을 이용한 자동 음소분할 및 레이블링 시스템을 제안한바 있다[1]. 본 논문에서는 문맥종속 반음소 단위 자동음소분할 및 레이블링 시스템의 성능을 개선하기 위하여, 반음소의 단위를 개선하였다. 기존에 제안된 반음소 단위는 음소의 중점을 기준으로 left/right의 반음소 단위로 양분하였다. 본 논문에서는 음소의 길이가 120ms 이상일 경우 음소의 천이구간의 특성을 잘 나타낼 수 있도록, 음소의 앞뒤구간 각각 60ms를 전반음소와 후반음소로 나누고, 나머지 안정구간을 별도의 모델로 구성하였다. 본 논문에서 제안한 반음소 단위의 성능을 평가하기 위하여 PBW 452단어를 발성한 남자 30명분의 데이터를 이용하여 레이블링 시스템을 훈련하고, 훈련에 사용하지 않은 남자 4명분의 데이터를 이용하여 테스트 하였다. 실험결과, 기존의 반음소 단위에 비하여 10ms에서 $69.09\%$$1.65\%$, 20ms에서 $85.32\%$$1.02\%$의 성능향상을 가져왔다.

  • PDF

A Text Reuse Measuring Model Using Circumference Sentence Similarity (주변 문장 유사도를 이용한 문서 재사용 측정 모델)

  • Choi, Sung-Won;Kim, Sang-Bum;Rim, Hae-Chang
    • Annual Conference on Human and Language Technology
    • /
    • 2005.10a
    • /
    • pp.179-183
    • /
    • 2005
  • 기존의 문서 재사용 탐지 모델은 문서 혹은 문장 단위로 그 내부의 단어 혹은 n-gram을 비교를 통해 문장의 재사용을 판별하였다. 그렇지만 문서 단위의 재사용 검사는 다른 문서의 일부분을 재사용하는 경우에 대해서는 문서 내에 문서 재사용이 이루어지지 않은 부분에 의해서 그 재사용 측정값이 낮아지게 되어 오류가 발생할 수 있는 가능성이 높아진다. 반면에 문장 단위의 문서 재사용 검사는 비교문서 내의 문장들에 대한 비교를 수행하게 되므로, 문서의 일부분에 대해 재사용물 수행한 경우에도 그 재사용된 부분 내의 문장들에 대한 비교를 수행하는 것이므로 문서 단위의 재사용에 비해 그런 경우에 더 견고하게 작동된다. 그렇지만, 문장 단위의 비교는 문서에 비해 짧은 문장을 단위로 하기 때문에 그 신뢰도에 문제가 발생하게 된다. 본 논문에서는 이런 문장단위 비교의 단점을 보완하기 위해 문장 단위의 문서 재사용 검사를 수행 후, 문장의 주변 문장의 재사용 검사 결과를 이용하여 문장 단위 재사용 검사에서 일어나는 오류를 감소시키고자 하였다.

  • PDF