• Title/Summary/Keyword: 단열(대)

Search Result 162, Processing Time 0.017 seconds

Geochemistry of Geothermal Waters in Korea: Environmental Isotope and Hydrochemical Characteristics I. Bugok Area (한반도 지열수의 지화학적 연구: 환경동위원소 및 수문화학적 특성 I. 부곡 지역)

  • Yun, Seong-Taek;Koh, Yong-Kwon;Kim, Chun-Soo;So, Chil-Sup
    • Economic and Environmental Geology
    • /
    • v.31 no.3
    • /
    • pp.185-199
    • /
    • 1998
  • Hydrogeochemical and environmental isotope studies were undertaken for various kinds of water samples collected in 1995-1996 from the Bugok geothermal area. Physicochemical data indicate the occurrence of three distinct groups of natural water: Group I ($Na-S0_4$ type water with high temperatures up to $77^{\circ}C$, occurring from the central part of the geothermal area), Group II (warm $Na-HCO_{3}-SO_{4}$ type water, occurring from peripheral sites), Group III ($Ca-HCO_3$ type water, occurring as surface waters and/or shallow cold groundwaters). The Group I waters are further divided into two SUbtypes: Subgroup Ia and Subgroup lb. The general order of increasing degrees of hydrogeochemical evolution (due to the degrees of water-rock interaction) is: Group III$\rightarrow$Group II$\rightarrow$Group I. The Group II and III waters show smaller degrees of interaction with rocks (largely calcite and Na-plagioclase), whereas the Group I waters record the stronger interaction with plagioclase, K-feldspar, mica, chlorite and pyrite. The concentration and sulfur isotope composition of dissolved sulfate appear as a key parameter to understand the origin and evolution of geothermal waters. The sulfate was derived not only from oxidation of sedimentary pyrites in surrounding rocks (especially for the Subgroup Ib waters) but also from magmatic hydrothermal pyrites occurring in restricted fracture channels which extend down to a deep geothermal reservoir (typically for the Subgroup Ia waters). It is shown that the applicability of alkaliion geothermometer calculations for these waters is hampered by several processes (especially the mixing with Mg-rich near-surface waters) that modify the chemical composition. However, the multi-component mineral/water equilibria calculation and available fluid inclusion data indicate that geothermal waters of the Bugok area reach temperatures around $125^{\circ}C$ at deep geothermal reservoir (possibly a cooling pluton). Environmental isotope data (oxygen-18, deuterium and tritium) indicate the origin of all groups of waters from diverse meteoric waters. The Subgroup Ia waters are typically lower in O-H isotope values and tritium content, indicating their derivation from distinct meteoric waters. Combined with tritium isotope data, the Subgroup Ia waters likely represent the older (at least 45 years old) meteoric waters circuated down to the deep geothermal reservoir and record the lesser degrees of mixing with near-surface waters. We propose a model for the genesis and evolution of sulfate-rich geothermal waters.

  • PDF

A Case Study of Strong Wind Event over Yeongdong Region on March 18-20, 2020 (2020년 3월 18일-20일 영동지역 강풍 사례 연구)

  • Ahn, Bo-Yeong;Kim, Yoo-Jun;Kim, Baek-Jo;Lee, Yong-Hee
    • Journal of the Korean earth science society
    • /
    • v.42 no.5
    • /
    • pp.479-495
    • /
    • 2021
  • This study investigates the synoptic (patterns of southern highs, northern lows, and lows rapidly developed by tropopause folding), thermodynamic, and kinematic characteristics of a strong wind that occurred in the Yeongdong region of South Korea on March 18-20, 2020. To do so, we analyzed data from an automatic weather station (AWS), weather charts, the European Centre for Medium-range Weather Forecasts (ECMWF) reanalysis, rawinsonde, and windprofiler radars. The daily maximum instantaneous wind speed, exceeding 20 m s-1, was observed at five weather stations during the analysis period. The strongest instantaneous wind speed (27.7 m s-1) appeared in the Daegwallyeong area. According to the analysis of weather charts, along with the arrangement of the north-south low-pressure line, the isobars were moved to the Yeongdong area. It showed a sine wave shape, and a strong wind developed owing to the strong pressure gradient. On March 19, in the northern part of the Korean Peninsula, with a drop in atmospheric pressure of 19 hPa or more within one day, a continuous strong wind was developed by the synoptic structure of the developing polar low. In the adiabatic chart observed in Bukgangneung, the altitude of the inversion layer was located at an altitude of approximately 1-3 km above the mountaintop, along with the maximum wind speed. We confirmed that this is consistent with the results of the vertical wind field analysis of the rawinsonde and windprofiler data. In particular, based on the thermodynamic and kinematic vertical analyses, we suggest that strong winds due to the vertical gradient of potential temperature in the lower layer and the development of potential vorticity due to tropopause folding play a significant role in the occurrence of strong winds in the Yeongdong region.