• 제목/요약/키워드: 단어 필터링

검색결과 96건 처리시간 0.018초

키워드 기반 블로그 마케팅을 위한 연관 키워드 추천 시스템 (Associated Keyword Recommendation System for Keyword-based Blog Marketing)

  • 최성자;손민영;김영학
    • 정보과학회 컴퓨팅의 실제 논문지
    • /
    • 제22권5호
    • /
    • pp.246-251
    • /
    • 2016
  • 최근에 SNS와 온라인 매체의 영향력이 커지면서 이를 이용한 마케팅에 대한 관심이 증가하고 있다. 블로그 마케팅은 대형 포털 사이트의 키워드 검색 결과에 따라 상위 노출을 함으로서 비교적 저렴한 비용으로 마케팅의 파급효과와 정보 전달력을 높일 수 있다. 그러나 일부 특정 키워드의 검색 결과의 경우 상위에 노출되려는 경쟁이 과열될 수 있기 때문에, 블로그를 상위에 노출하기 위해서는 장기적이고 적극적인 노력이 필요하다. 따라서 본 연구에서는 블로그의 상위 노출 가능성이 높은 연관 키워드 그룹을 추천하는 새로운 방법을 제안한다. 제안된 방법은 먼저 타겟 키워드의 검색 결과에 포함된 블로그 문서들을 수집하여 단어의 빈번도와 위치정보를 고려하여 연관성이 높은 키워드를 추출하고 필터링한다. 다음에 각 연관 키워드를 타겟 키워드와 비교하여 그들의 연관성, 월간 연관 키워드 검색 량, 검색에 포함된 블로그의 개수, 블로그의 평균 작성 일을 고려하여 상위 노출의 가능성이 높은 연관 키워드 그룹을 추천한다. 본 연구에서 실험을 통하여 제안된 방법이 연관성이 높은 키워드 그룹을 추천함을 보인다.

빅데이터 클러스터에서의 추출된 형태소를 이용한 유사 동영상 추천 시스템 설계 (A Design of Similar Video Recommendation System using Extracted Words in Big Data Cluster)

  • 이현섭;김진덕
    • 한국정보통신학회논문지
    • /
    • 제24권2호
    • /
    • pp.172-178
    • /
    • 2020
  • 최근 널리 이용되고 있는 동영상 공유 서비스에서는 콘텐츠 추천 시스템이 매우 중요한 요소이다. 콘텐츠 추천을 위해서 일반적으로 사용자 선호도와 동영상(아이템) 유사도를 동시에 고려하는 협업 필터링을 사용하고 있다. 그러한 서비스는 주로 사용자의 검색 키워드와 시청시간과 같은 개인 선호도를 활용하여 사용자의 편의를 도모한다. 또한 동영상에 지정한 키워드를 중심으로 랭킹화한다. 그러나 한정된 키워드만을 이용한 동영상 유사도를 분석한다는 한계가 있다. 이런 경우 지정한 키워드가 아이템을 제대로 반영하지 못하는 경우 그 문제가 심각해진다. 이 논문에서는 교육 동영상으로부터 차별화된 의미를 갖는 모든 단어를 고려하여 유사도를 분석하며, 이런 경우 데이터와 연산의 규모가 방대하기 때문에 빅데이터 클러스터에서 처리하는 방법을 적용한다. 제안한 시스템은 빅데이터 영상 분석을 통해 동영상 공유 서비스 플랫폼의 기본 모듈로 활용될 것으로 기대한다.

n-Gram 색인화와 Support Vector Machine을 사용한 스팸메일 필터링에 대한 연구 (A study on the Filtering of Spam E-mail using n-Gram indexing and Support Vector Machine)

  • 서정우;손태식;서정택;문종섭
    • 정보보호학회논문지
    • /
    • 제14권2호
    • /
    • pp.23-33
    • /
    • 2004
  • 인터넷 환경의 급속한 발전으로 인하여 이메일을 통한 메시지 교환은 급속히 증가하고 있다. 그러나 이메일의 편리성에도 불구하고 개인이나 기업에서는 스팸메일로 인한 시간과 비용의 낭비가 크게 증가하고 있다. 이러한 스팸메일에 대한 문제들을 해결하기 위하여 많은 방법들이 연구되고 있으며, 대표적인 방법으로 키워드를 이용한 패턴매칭이나 나이의 베이지안 방식과 같은 확률을 이용한 방법들이 있다. 본 논문에서는 기존의 연구에 대한 문제점을 보완하기 위하여 패턴 분류문제에 있어서 우수한 성능을 보이는 Support Vector Machine을 사용하여 정상적인 메일과 스팸메일을 분류하는 방안을 제시하였으며, 특히 n-Gram을 사용하여 생성된 색인어와 단어사전을 학습데이터 생성에 사용함으로서 효율적인 학습을 수행하도록 하였다. 결론에서는 제안된 방법에 대한 성능을 검증하기 위하여 기존의 연구 결과와 비교함으로서 제안된 방법의 성능을 검증하였다.

시각장애인의 정보 접근성 향상을 위한 모바일 신문 어플리케이션 인터페이스 (A Mobile Newspaper Application Interface to Enhance Information Accessibility of the Visually Impaired)

  • 이승환;홍성호;고승희;최희연;황성수
    • 한국HCI학회논문지
    • /
    • 제11권3호
    • /
    • pp.5-12
    • /
    • 2016
  • 최근 TTS(Text-to-Speech)기능을 활용한 시각 장애인의 스마트폰 사용이 계속 증가하고 있다. TTS기능은 어플리케이션 내부의 문자 정보를 음성정보로 전환하며, 어플리케이션 내 정보를 순차적으로만 접근할 수 있다. 이러한 이유로 어플리케이션 내부의 버튼 및 콘텐츠의 배치가 효과적으로 이루어져야 한다. 그러나 기존에 제안된 모바일 어플리케이션, 특히 다양한 콘텐츠가 포함된 신문 어플리케이션의 경우 TTS 사용 환경을 고려하지 않았다. 따라서 시각 장애인들이 이용하기에 매우 어려운 상황이다. 또한 전맹인 이외에도 저시력 장애인을 고려한 인터페이스가 필요한 상황이다. 따라서 본 논문은 다양한 시각장애인의 접근성과 요구를 반영한 모바일 신문 어플리케이션 인터페이스를 제안한다. 제안하는 인터페이스는 TTS 사용 환경을 고려한 버튼 배치 및 검색 기능 및 이미 읽은 기사 분류 기능을 통해 빠르게 어플리케이션을 사용할 수 있게 하였다. 또한 잘못 발음되는 단어를 필터링하고 버튼에 대한 충분한 설명을 통해 어플리케이션을 원활하게 사용할 수 있게 하였다. 마지막으로 저시력 장애인을 위해 글자 크기 확대, 화면 반전 기능 등을 구현하였다. 실험 결과 제안하는 인터페이스가 일반 신문 어플리케이션 및 기존에 제안된 시각장애인용 인터페이스보다 기사 검색 속도 및 어플리케이션 사용성 측면에서 높은 성능을 나타내는 것을 확인하였다.

효과적인 이메일 분류를 위한 빈발 항목집합 기반 최적 이메일 폴더 추천 기법 (A proper folder recommendation technique using frequent itemsets for efficient e-mail classification)

  • 문종필;이원석;장중혁
    • 한국컴퓨터정보학회논문지
    • /
    • 제16권2호
    • /
    • pp.33-46
    • /
    • 2011
  • 이메일이 중요한 정보 전달과 의사소통의 수단으로 널리 활용된 이래 사람들은 이메일을 내용에 따라 적절하게 분류하는 작업에 많은 노력을 기울려 왔다. 이메일은 문서의 길이나 문체가 다양하며 사용되는 단어들이 비정규적이다. 또한 이메일 분류 기준은 일반적으로 해당 이메일 사용자의 주관에 따라 정의된다. 따라서 기존의 일반적인 문서분류 기법으로는 이메일을 효율적으로 분류하는데 어려움이 있다. 상업용 이메일 프로그램에서 제공되는 분류 기능은 메일 클라이언트에서 지원하는 텍스트 필터링을 이용한다. 한편 이메일의 자동 분류에 관한 연구는 확률 기반의 나이브 베이지안 기법을 응용하여 정확도를 높일 수 있는 연구가 주로 진행되어 왔으며, 대부분 영문 이메일에 대한 연구이다. 본 논문에서는 빈발 패턴 마이닝 기법을 적용하여 한글 이메일에 대한 개인 맞춤형 폴더 추천기법을 제시한다. 이메일의 맞춤형 폴더 추천 기법은 이메일에 대한 전처리 과정과 빈발 항목집합을 이용한 메일 폴더의 프로파일 생성과정으로 구성된다. 생성된 프로파일은 분류 대상이 되는 각 메일이 개인별 맞춤형 기준에 따라 가장 적합한 이메일 폴더로 효과적으로 분류되는데 활용된다. 또한 제안된 기법을 적용한 이메일 분류 시스템을 구현한다.

반복적 부스팅 학습을 이용한 문서 여과 (Text Filtering using Iterative Boosting Algorithms)

  • 한상윤;장병탁
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제29권4호
    • /
    • pp.270-277
    • /
    • 2002
  • 문서 여과 문제 (text filtering)는 어떤 문서가 특정한 주제에 속하는지의 여부를 판별하는 문제이다. 인터넷과 웹이 널리 퍼지고 이메일로 전송되는 문서의 양이 폭발적으로 증가함에 따라 문서 여과의 중요성도 따라서 증가하고 있는 추세이다. 이 논문에서는 새로운 학습 방법인 에이다부스트 학습 방법을 문서 여과 문제에 적용하여 기존의 방법들보다 우수한 분류 결과를 나타내는 문서 여과 시스템을 생성하고자 한다. 에이다 부스트는 간단한 가설의 집합을 생성하고 묶는 기법인데, 이 때 각각의 가설들은 문서가 특정 단어를 포함하고 있는지 검사하여 이에 따라 문서의 적합성을 판별한다. 먼저 최종 여과 시스템을 구성하는 각 가설의 출력이 1 또는 -1이 되는 이진 가설을 사용하는 기존의 에이다부스트 알고리즘에서 출발하여 좀 더 최근에 제안된 확신 정도 (실수값)를 출력하는 가설을 이용하는 에이다부스트 알고리즘을 적용함으로써 오류 감소 속도와 최종 오류율을 개선하고자 하였다. 또 각 데이타에 대한 초기 가중치를 연속 포아송 분포에 따라 임의로 부여하여 여러 번의 부스팅을 수행한 후 그 결과를 결합하는 방법을 사용함으로써 적은 학습 데이타로 인해 발생하는 과도학습의 문제를 완화하고자 하였다. 실험 데이터로는 TREC-8 필터링 트랙 데이타셋을 사용하였다. 이 데이타셋은 1992년도부터 1994년도 사이의 파이낸셜 타임스 기사로 이루어져 있다. 실험 결과, 실수값을 출력하는 가설을 사용했을 때 이진값을 갖는 가설을 사용했을 때 보다 좋은 결과를 보였고 임의 가중치를 사용하여 여러번 부스팅을 하는 방법이 더욱 향상된 성능을 나타내었다. 다른 TREC 참가자들과의 비교결과도 제시한다.