• Title/Summary/Keyword: 단어 표현

Search Result 569, Processing Time 0.02 seconds

Detection of Character Emotional Type Based on Classification of Emotional Words at Story (스토리기반 저작물에서 감정어 분류에 기반한 등장인물의 감정 성향 판단)

  • Baek, Yeong Tae
    • Journal of the Korea Society of Computer and Information
    • /
    • v.18 no.9
    • /
    • pp.131-138
    • /
    • 2013
  • In this paper, I propose and evaluate the method that classifies emotional type of characters with their emotional words. Emotional types are classified as three types such as positive, negative and neutral. They are selected by classification of emotional words that characters speak. I propose the method to extract emotional words based on WordNet, and to represent as emotional vector. WordNet is thesaurus of network structure connected by hypernym, hyponym, synonym, antonym, and so on. Emotion word is extracted by calculating its emotional distance to each emotional category. The number of emotional category is 30. Therefore, emotional vector has 30 levels. When all emotional vectors of some character are accumulated, her/his emotion of a movie can be represented as a emotional vector. Also, thirty emotional categories can be classified as three elements of positive, negative, and neutral. As a result, emotion of some character can be represented by values of three elements. The proposed method was evaluated for 12 characters of four movies. Result of evaluation showed the accuracy of 75%.

Automatic Evaluation of Elementary School English Writing Based on Recurrent Neural Network Language Model (순환 신경망 기반 언어 모델을 활용한 초등 영어 글쓰기 자동 평가)

  • Park, Youngki
    • Journal of The Korean Association of Information Education
    • /
    • v.21 no.2
    • /
    • pp.161-169
    • /
    • 2017
  • We often use spellcheckers in order to correct the syntactic errors in our documents. However, these computer programs are not enough for elementary school students, because their sentences are not smooth even after correcting the syntactic errors in many cases. In this paper, we introduce an automated method for evaluating the smoothness of two synonymous sentences. This method uses a recurrent neural network to solve the problem of long-term dependencies and exploits subwords to cope with the rare word problem. We trained the recurrent neural network language model based on a monolingual corpus of about two million English sentences. In our experiments, the trained model successfully selected the more smooth sentences for all of nine types of test set. We expect that our approach will help in elementary school writing after being implemented as an application for smart devices.

Development of a Hand Shape Editor for Sign Language Expression (수화 표현을 위한 손 모양 편집 프로그램의 개발)

  • Oh, Young-Joon;Park, Kwang-Hyun;Bien, Zeung-Nam
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.44 no.4 s.316
    • /
    • pp.48-54
    • /
    • 2007
  • Hand shape is one of important elements in Korean Sign Language (KSL), which is a communication method for the deaf. To express sign motion in a virtual reality environment based on OpenGL, we need an editor which can insert and modify sign motion data. However, it is very difficult that people, who lack knowledge of sign 1anguage, exactly edit and express hand shape using the existing editors. We also need a program to efficiently construct and store the hand shape data because the number of data is very large in a sign word dictionary. In this paper we developed a KSL hand shape editor to easily construct and edit hand shape by a graphical user interface (GUI), and to store it in a database. Hand shape codes are used in a sign word editor to synthesize sign motion and decreases total amount of KSL data.

Design and Implementation of Finite-State-Transducer Preprocessor for an Efficient Parsing and Translation in Korean-to-English Machine Translation (한영 기계번역에서의 효율적인 구문분석과 번역을 위한 유한상태 변환기 기반 전처리기의 설계 및 구현)

  • Park, Jun-Sik;Choi, Key-Sun
    • Annual Conference on Human and Language Technology
    • /
    • 1999.10e
    • /
    • pp.128-134
    • /
    • 1999
  • 기계번역이나 정보검색 등에 적용되는 자연언어처리기술에 있어서 구문분석은 매우 중요한 위치를 차지한다. 하지만, 문장의 길이가 증가함에 따라 구문분석의 복잡도는 크게 증가하게 된다. 이를 해결하기 위한 많은 노력 중에서 전처리기의 지원을 통해 구문분석기의 부담을 줄이려는 방법이 있다. 본 논문에서는 구문분석의 애매성과 복잡성을 감소시키기 위해 유한상태 변환기 (Finite-State-Transducer FSI)를 이용한 전처리기를 제안한다. 유한상태 변환기는 사전표현, 단어분할, 품사태깅 등에 널리 사용되어 왔는데, 본 논문에서는 유한상태 변환기를 이용하여 형태소 분석된 문장에서 시간표현 등의 제한된 표현들을 구문요소화하는 전처리기를 설계 및 구현하였다. 본 논문에서는 기계번역기에서의 구문분석기 뿐만 아니라 변환지식의 모듈화를 지원하기 위해 유한상태 변환기를 이용하여 시간표현 등의 부분적인 표현들을 번역하는 방법을 제안한다. 또한 유한상태 변환기의 편리한 작성을 위하여 유한상태 변환기 작성 지원도구를 구현하였다. 본 논문에서는 전처리기의 적용을 통해 구문분석기의 부담을 덜어 주며 기계번역기의 변환부분의 일부를 성공적으로 담당할 수 있음을 보여 준다.

  • PDF

Sentence Cohesion & Subject driving Keywords Extraction for Document Classification (문서 분류를 위한 문장 응집도와 주어 주도의 주제어 추출)

  • Ahn Heui-Kook;Roh Hi-Young
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2005.07b
    • /
    • pp.463-465
    • /
    • 2005
  • 문서분류 시 문서의 내용을 표현하기 위한 자질로서 사용되는 단어의 출현빈도정보는 해당 문서의 주제어를 표현하기에 취약한 점을 갖고 있다. 즉, 키워드가 문장에서 어떠한 목적(의미)으로 사용되었는지에 대한 정보를 표현할 수가 없고, 문장 간의 응집도가 강한 문장에서 추출되었는지 아닌지에 대한 정보를 표현할 수가 없다. 따라서, 이 정보로부터 문서분류를 하는 것은 그 정확도에 있어서 한계를 갖게 된다. 본 논문에서는 이러한 문서표현의 문제를 해결하기위해, 키워드를 선택할 때, 자질로서 문장의 역할(주어)정보를 추출하여 가중치 부여방식을 통하여 주어주도정보량을 추출하였다. 또한, 자질로서 문장 내 키워드들의 동시출현빈도 정보를 추출하여 문장 간 키워드들의 연관성정도를 시소러스에 담아내었다. 그리고, 이로부터 응집도 정보를 추출하였다. 이 두 정보의 통합으로부터 문서 주제어를 결정함으로서, 문서분류를 위한 주제어 추출 시 불필요한 키워드의 삽입을 줄이고, 동시 출현하는 키워드들에 대한 선택 기준을 제공하고자 하였다. 실험을 통해 한번 출현한 키워드라도, 문장을 주도하는 주어로서 사용될 경우와 응집도 가중치가 높을 경우에 주제어로서의 선택될 가능성이 향상되고, 문서분류를 위해 좀 더 세분화된 키워드 점수화가 가능함을 확인하였다. 따라서, 선택된 주제어가 문서분류의 정확도에 있어서 향상을 가져올 수 있을 것으로 기대한다.

  • PDF

Performance Comparison of Out-Of-Vocabulary Word Rejection Algorithms in Variable Vocabulary Word Recognition (가변어휘 단어 인식에서의 미등록어 거절 알고리즘 성능 비교)

  • 김기태;문광식;김회린;이영직;정재호
    • The Journal of the Acoustical Society of Korea
    • /
    • v.20 no.2
    • /
    • pp.27-34
    • /
    • 2001
  • Utterance verification is used in variable vocabulary word recognition to reject the word that does not belong to in-vocabulary word or does not belong to correctly recognized word. Utterance verification is an important technology to design a user-friendly speech recognition system. We propose a new utterance verification algorithm for no-training utterance verification system based on the minimum verification error. First, using PBW (Phonetically Balanced Words) DB (445 words), we create no-training anti-phoneme models which include many PLUs(Phoneme Like Units), so anti-phoneme models have the minimum verification error. Then, for OOV (Out-Of-Vocabulary) rejection, the phoneme-based confidence measure which uses the likelihood between phoneme model (null hypothesis) and anti-phoneme model (alternative hypothesis) is normalized by null hypothesis, so the phoneme-based confidence measure tends to be more robust to OOV rejection. And, the word-based confidence measure which uses the phoneme-based confidence measure has been shown to provide improved detection of near-misses in speech recognition as well as better discrimination between in-vocabularys and OOVs. Using our proposed anti-model and confidence measure, we achieve significant performance improvement; CA (Correctly Accept for In-Vocabulary) is about 89%, and CR (Correctly Reject for OOV) is about 90%, improving about 15-21% in ERR (Error Reduction Rate).

  • PDF

Improving minority prediction performance of support vector machine for imbalanced text data via feature selection and SMOTE (단어선택과 SMOTE 알고리즘을 이용한 불균형 텍스트 데이터의 소수 범주 예측성능 향상 기법)

  • Jongchan Kim;Seong Jun Chang;Won Son
    • The Korean Journal of Applied Statistics
    • /
    • v.37 no.4
    • /
    • pp.395-410
    • /
    • 2024
  • Text data is usually made up of a wide variety of unique words. Even in standard text data, it is common to find tens of thousands of different words. In text data analysis, usually, each unique word is treated as a variable. Thus, text data can be regarded as a dataset with a large number of variables. On the other hand, in text data classification, we often encounter class label imbalance problems. In the cases of substantial imbalances, the performance of conventional classification models can be severely degraded. To improve the classification performance of support vector machines (SVM) for imbalanced data, algorithms such as the Synthetic Minority Over-sampling Technique (SMOTE) can be used. The SMOTE algorithm synthetically generates new observations for the minority class based on the k-Nearest Neighbors (kNN) algorithm. However, in datasets with a large number of variables, such as text data, errors may accumulate. This can potentially impact the performance of the kNN algorithm. In this study, we propose a method for enhancing prediction performance for the minority class of imbalanced text data. Our approach involves employing variable selection to generate new synthetic observations in a reduced space, thereby improving the overall classification performance of SVM.

An Evaluation of Category Features in Text Categorization Using Nearest Neighbor Method (Nearest Neighbor 방법을 이용한 문서 범주화에서 범주 자질의 평가)

  • Kwon, Oh-Woog;Lee, Jong-Hyeok;Lee, Geun-Bae
    • Annual Conference on Human and Language Technology
    • /
    • 1997.10a
    • /
    • pp.7-14
    • /
    • 1997
  • 문서 범주화에서 문서의 내용에 따라 적합한 범주의 종류와 수를 찾는 문제를 해결하기 위해서는 문서 당 하나의 범주를 할당할 경우에 가장 좋은 성능을 보이는 모델이 효과적일 것이다. 그러므로, 본 논문에서는 문서 당 하나의 범주를 할당할 경우에 좋은 결과를 보이는 k-nearest neighbor 방법을 이용한다. 그리고 k-nearest neighbor 방법을 이용한 문서 범주화의 성능을 향상시키기 위해서, 문서 표현에 사용하는 단어들을 범주 자질의 성격을 갖는 단어들로 제한하는 방법을 제안한다. 제안한 방법은 Router 신문 일년치로 구성된 Router-21578 테스트 집합에서 breakeven point 82%라는 좋은 결과를 보였다.

  • PDF

Development of 3D sign language learning system for processing natural language (자연어 처리 수화 3D 학습 시스템 개발)

  • Kim, jai-hyun
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2011.05a
    • /
    • pp.229-230
    • /
    • 2011
  • 이 연구는 청각장애자 및 건청인들을 위한 수화교육 시스템으로 주어진 환경 내에서 청각 장애자 및 건청인들에게 3D 시각적인 정보를 활용해 교육하는 시스템에 대한 연구이다. 실생활에서 사용하는 수화 동작은 3D DB화하여, 입력되는 한글 텍스트에 대응해 3D 캐릭터가 수화 동작을 리얼하게 구현하는 것을 목적으로, 수화 교육이 필요한 장소나 사람들에게 유용하게 활용할 수 있도록 한다. 생활단어를 추가하여 대부분의 생활용어를 적절히 표현할 수 있도록 하고, 자연스러운 수화단어 구현을 위한 모션 편집 및 블랜딩 기법을 적용하며, 자연어처리 알고리즘을 활용하여 한글문장에도 대응할 수 있도록 개발하기 위하여 수화 애니메이션 기술, 한글 입력 문장에 따른 3D 수화 구문 변화 자연어 처리 알고리즘, 실시간 3D 랜더링 기술 등을 근간으로 한 시스템을 개발하고자 한다.

  • PDF

A Josa-Errors Detection and Correction from Korea-English Mixed Sentences (한.영 혼용 문에서 조사오류 검출 및 교정)

  • Jung, Kyu-Chol;Jung, Min-Su;Cho, Won-Hong
    • Annual Conference on Human and Language Technology
    • /
    • 1998.10c
    • /
    • pp.36-40
    • /
    • 1998
  • 전문 분야의 세분화로 인한 신조어 발생이 늘어나고 있다. 또한, 이러한 단어를 우리말로 표현이 불가능한 경우 우리 발음으로 풀어 기록하지 않고 그대로 적는 경우도 늘어나고 있는 추세이다. 특히 전문 서적일수록 두드러진다. 그러나 한글과 영어를 혼용하여 기록할 경우 부적절한 조사의 쓰임으로 인하여 매끄럽지 못함을 가끔 볼 수 있다. 본 논문에서는 영단어의 발음특성정보를 이용하여 한글 조사의 오류를 정확하게 검출하고 교정을 할 수 있다.

  • PDF