• Title/Summary/Keyword: 단어 중의성 해결

Search Result 48, Processing Time 0.029 seconds

Emotion Analysis Using a Bidirectional LSTM for Word Sense Disambiguation (양방향 LSTM을 적용한 단어의미 중의성 해소 감정분석)

  • Ki, Ho-Yeon;Shin, Kyung-shik
    • The Journal of Bigdata
    • /
    • v.5 no.1
    • /
    • pp.197-208
    • /
    • 2020
  • Lexical ambiguity means that a word can be interpreted as two or more meanings, such as homonym and polysemy, and there are many cases of word sense ambiguation in words expressing emotions. In terms of projecting human psychology, these words convey specific and rich contexts, resulting in lexical ambiguity. In this study, we propose an emotional classification model that disambiguate word sense using bidirectional LSTM. It is based on the assumption that if the information of the surrounding context is fully reflected, the problem of lexical ambiguity can be solved and the emotions that the sentence wants to express can be expressed as one. Bidirectional LSTM is an algorithm that is frequently used in the field of natural language processing research requiring contextual information and is also intended to be used in this study to learn context. GloVe embedding is used as the embedding layer of this research model, and the performance of this model was verified compared to the model applied with LSTM and RNN algorithms. Such a framework could contribute to various fields, including marketing, which could connect the emotions of SNS users to their desire for consumption.

Efficient Synonym Detection Method through Keyword Extension (키워드 확장을 통한 효율적인 유의어 검출 방법)

  • Ji, Ki Yong;Park, JiSu;Shon, Jin Gon
    • Annual Conference of KIPS
    • /
    • 2018.10a
    • /
    • pp.767-770
    • /
    • 2018
  • 인공지능의 발달로 사람이 사용하는 자연어 형태의 문장을 통해 정보를 주고받는 질의응답 시스템이 주목받고 있다. 이러한 질의응답 시스템은 자연어로 구성된 사용자의 질의문에서 의도를 정확하게 파악해야 한다. 단순히 질의어의 키워드에 의존한 검색은 단어의 중의성을 고려하지 않아 질의문의 의도를 정확히 파악하는 데 문제가 있다. 이런 문제점을 해결하기 위해 질의문의 의미와 맥락에 따른 연관성을 이용하여 유의어를 확장하는 방법이 연구되고 있다. 본 논문에서는 워드 임베딩을 통해 생성된 단어 유사도를 이용하여 질의문에서 추출된 키워드를 확장하는 방법을 제안한다.

Korean Word Sense Disambiguation using Dictionary and Corpus (사전과 말뭉치를 이용한 한국어 단어 중의성 해소)

  • Jeong, Hanjo;Park, Byeonghwa
    • Journal of Intelligence and Information Systems
    • /
    • v.21 no.1
    • /
    • pp.1-13
    • /
    • 2015
  • As opinion mining in big data applications has been highlighted, a lot of research on unstructured data has made. Lots of social media on the Internet generate unstructured or semi-structured data every second and they are often made by natural or human languages we use in daily life. Many words in human languages have multiple meanings or senses. In this result, it is very difficult for computers to extract useful information from these datasets. Traditional web search engines are usually based on keyword search, resulting in incorrect search results which are far from users' intentions. Even though a lot of progress in enhancing the performance of search engines has made over the last years in order to provide users with appropriate results, there is still so much to improve it. Word sense disambiguation can play a very important role in dealing with natural language processing and is considered as one of the most difficult problems in this area. Major approaches to word sense disambiguation can be classified as knowledge-base, supervised corpus-based, and unsupervised corpus-based approaches. This paper presents a method which automatically generates a corpus for word sense disambiguation by taking advantage of examples in existing dictionaries and avoids expensive sense tagging processes. It experiments the effectiveness of the method based on Naïve Bayes Model, which is one of supervised learning algorithms, by using Korean standard unabridged dictionary and Sejong Corpus. Korean standard unabridged dictionary has approximately 57,000 sentences. Sejong Corpus has about 790,000 sentences tagged with part-of-speech and senses all together. For the experiment of this study, Korean standard unabridged dictionary and Sejong Corpus were experimented as a combination and separate entities using cross validation. Only nouns, target subjects in word sense disambiguation, were selected. 93,522 word senses among 265,655 nouns and 56,914 sentences from related proverbs and examples were additionally combined in the corpus. Sejong Corpus was easily merged with Korean standard unabridged dictionary because Sejong Corpus was tagged based on sense indices defined by Korean standard unabridged dictionary. Sense vectors were formed after the merged corpus was created. Terms used in creating sense vectors were added in the named entity dictionary of Korean morphological analyzer. By using the extended named entity dictionary, term vectors were extracted from the input sentences and then term vectors for the sentences were created. Given the extracted term vector and the sense vector model made during the pre-processing stage, the sense-tagged terms were determined by the vector space model based word sense disambiguation. In addition, this study shows the effectiveness of merged corpus from examples in Korean standard unabridged dictionary and Sejong Corpus. The experiment shows the better results in precision and recall are found with the merged corpus. This study suggests it can practically enhance the performance of internet search engines and help us to understand more accurate meaning of a sentence in natural language processing pertinent to search engines, opinion mining, and text mining. Naïve Bayes classifier used in this study represents a supervised learning algorithm and uses Bayes theorem. Naïve Bayes classifier has an assumption that all senses are independent. Even though the assumption of Naïve Bayes classifier is not realistic and ignores the correlation between attributes, Naïve Bayes classifier is widely used because of its simplicity and in practice it is known to be very effective in many applications such as text classification and medical diagnosis. However, further research need to be carried out to consider all possible combinations and/or partial combinations of all senses in a sentence. Also, the effectiveness of word sense disambiguation may be improved if rhetorical structures or morphological dependencies between words are analyzed through syntactic analysis.

Weighting and Query Structuring Scheme for Disambiguation in CLTR (교차언어 문서검색에서 중의성 해소를 위한 가중치 부여 및 질의어 구조화 방법)

  • Jeong, Eui-Heon;Kwon, Oh-Woog;Lee, Jong-Hyeok
    • Annual Conference on Human and Language Technology
    • /
    • 2001.10d
    • /
    • pp.175-182
    • /
    • 2001
  • 본 논문은 사전에 기반한 질의변환 교차언어 문서검색에서, 대역어 중의성 문제를 해결하기 위한, 질의어 가중치 부여 및 구조화 방법을 제안한다. 제안하는 방법의 질의 변환 과정은 다음의 세 단계로 이루어진다. 첫째, 대역어 클러스터링을 통해 먼저 질의어 단어의 적합한 의미를 결정짓고, 둘째, 문맥정보와 지역정보를 이용하여 후보 대역어들간의 상호관계를 분석하며, 셋째, 각 후보 대역어들을 연결하여, 후보 질의어를 만들고 각각에 가중치를 부여하여 weighted Boolean 질의어로 생성하게 된다. 이를 통해, 단순하고 경제적이지만, 높은 성능을 낼 수 있는 사전에 의한 질의변환 교차언어 문서검색 방법을 제시하고자 한다.

  • PDF

Fake news detection using deep learning (딥러닝 기법을 이용한 가짜뉴스 탐지)

  • Lee, Dong-Ho;Lee, Jung-Hoon;Kim, Yu-Ri;Kim, Hyeong-Jun;Park, Seung-Myun;Yang, Yu-Jun;Shin, Woong-Bi
    • Annual Conference of KIPS
    • /
    • 2018.05a
    • /
    • pp.384-387
    • /
    • 2018
  • SNS가 급속도로 확산되며 거짓 정보를 언론으로 위장한 형태인 가짜뉴스는 큰 사회적 문제가 되었다. 본 논문에서는 이를 해결하기 위해 한글 가짜뉴스 탐지를 위한 딥러닝 모델을 제시한다. 기존 연구들은 영어에 적합한 모델들을 제시하고 있으나, 한글은 같은 의미라도 더 짧은 문장으로 표현 가능해 딥러닝을 하기 위한 특징수가 부족하여 깊은 신경망을 운용하기 어렵다는 점과, 형태소 중의성으로 인한 의미 분석의 어려움으로 인해 기존 오델들을 적용하기에는 한계가 있다. 이를 해결하기 위해 얕은 CNN 모델과 음절 단위로 학습된 단어 임베딩 모델인 'Fasttext'를 활용하여 시스템을 구현하고, 이를 학습시켜 검증하였다.

Management of Three-Syllable Nouns in Electronic Dictionary based on Morphological Information (형태 정보에 기반한 전자사전에서의 3음절 명사 처리)

  • 이은전;최기선
    • Proceedings of the Korean Society for Cognitive Science Conference
    • /
    • 2000.06a
    • /
    • pp.156-162
    • /
    • 2000
  • 언어학적 성과를 효과적으로 반영하고 운용할 수 있는 체계적인 전자 사전 구축을 위해선, 어휘들에 대한 총체적이고 체계적인 언어 정보 제공과 함께 효율적인 처리 방식이 무엇보다도 필요하다. 따라서 이번 전자 사전 구축 작업은 내용 면에서는 형태 정보를 중심으로 다양하고 상세한 어휘 특성들을 체계적으로 제시하였고, 기술 방식에 있어서는 모든 입력 정보를 코드화 시킴으로써 효율성을 추구했다. 또한 연구 과정에서 나타난 문제 유형에 대한 인식과 검토는 앞으로 사전 개발의 원칙 및 방향을 설정하는데 도움을 줄 수 있을 것으로 기대한다. 특히 단어 형성 정보에 있어서 접사 정보가 부착된 파생어 사전은 어휘 확장과 중의성 해결을 하는데 활용될 수 있을 것이다. 본고에서는 3음절 명사 사전 작업의 전반적인 파전, 분류 유형, 어휘 정보, 기술 방법 및 앞으로 논의될 문제 유형들을 담고 있다.

  • PDF

Management of Three-Syllable Nouns in Electronic Dictionary based on Morphological Information (형태 정보에 기만한 전자사전에서의 3음절 명사 처리)

  • Lee, Eun-Jeon;Choi, Key-Sun
    • Annual Conference on Human and Language Technology
    • /
    • 2000.10d
    • /
    • pp.156-162
    • /
    • 2000
  • 언어학적 성과를 효과적으로 반영하고 운용할 수 있는 체계적인 전자 사전 구축을 위해선, 어휘들에 대한 총체적이고 체계적인 언어 정보 제공과 함께 효율적인 처리 방식이 무엇보다도 필요하다. 따라서 이번 전자 사전 구축 작업은 내용 면에서는 형태 정보를 중심으로 다양하고 상세한 어휘 특성들을 체계적으로 제시하였고, 기술 방식에 있어서는 모든 입력 정보를 코드화시킴으로써 효율성을 추구했다. 또한 연구 과정에서 나타난 문제 유형에 대한 인식과 검토는 앞으로 사전 개발의 원칙 및 방향을 설정하는데 도움을 줄 수 있을 것으로 기대한다. 특히 단어 형성 정보에 있어서 접사 정보가 부착된 파생어 사전은 어휘 확장과 중의성 해결을 하는데 활용될 수 있을 것이다. 본고에서는 3음절 명사 사전 작업의 전반적인 과정, 분류 유형, 어휘 정보, 기술 방법 및 앞으로 논의될 문제 유형들을 담고 있다.

  • PDF

Lexical Expansion of Sentence Parsers (구문분석기의 어휘확장)

  • Kim, Min-Chan;Kim, Gon;J. Bae, Jae-Hak
    • Annual Conference of KIPS
    • /
    • 2005.05a
    • /
    • pp.755-758
    • /
    • 2005
  • 본 논문에서는 구문분석기의 어휘확장을 통해 구문분석의 성공률을 높이고자 하였다. 구문분석은 문장내 구성성분들이 가지는 통사적인 관련성을 파악하는 작업이다. 구문분석 실패의 가장 빈번한 원인 중의 하나는 미등록 어휘의 출현이다. 결여된 어휘문제를 해결하는 것은 구문분석의 성공률을 높이고, 원문이해 시스템을 보다 더 견고하게 하는데 관건으로 작용한다. 이를 위하여, 본 논문에서는 구분분석기 LGPI+ 의 어휘 사전에 존재하지 않는 단어들을 또 다른 어휘자원인 WordNet을 이용하여 해결하고자 하였다. 구체적으로는, (1) 미등록 어휘를 WordNet에서 찾고, (2) 그 유의어 정보를 파악하여, (3) LGPI+ 어휘사전에 추가한다. 실험을 통하여 구문분석의 실패를 해결하고, 정확도와 성공률을 높일 수 있음을 확인하였다.

  • PDF

Korean Dependency Parser using Stack-Pointer Network and Information of Word Units (스택-포인터 네트워크와 어절 정보를 이용한 한국어 의존 구문 파서)

  • Choi, Yong-seok;Lee, Kong Joo
    • Annual Conference on Human and Language Technology
    • /
    • 2018.10a
    • /
    • pp.13-18
    • /
    • 2018
  • 구문 분석은 문장의 구조를 이해하며 의미의 중의성을 해결하는 것이다. 일반적으로 한국어는 어순 배열의 자유도가 높고 문장 성분의 생략이 빈번한 특성이 있기 때문에 의존 구문 분석이 주된 연구 대상이 되어 왔다. 스택-포인터 네트워크 모델은 의존 구문 파서에 맞게 포인터 네트워크 모델을 확장한 것이다. 스택-포인터 네트워크는 각 단어에서 의존소를 찾는 하향식 방식의 모델로 기존 모델의 장점을 유지하면서 각 단계에서 파생된 트리 정보도 사용한다. 본 연구에서는 스택-포인터 네트워크 모델을 한국어에 적용해보고 이와 함께 어절 정보를 반영하는 방법을 제안한다. 모델의 실험 결과는 세종 구문 구조를 중심어 후위(head-final)를 엄격히 준수하여 의존 구문 구조로 변환한 것을 기준으로 UAS 92.65%의 정확도를 얻었다.

  • PDF

Informal ion Retrieval using Word Sense Disambiguation based on Statintical Method (통계기만 의미중의성 해소를 이용한 정보검색)

  • Hur, Jeong;Kim, Hyun-Jin;Jang, Myung-Gil
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2002.04b
    • /
    • pp.508-510
    • /
    • 2002
  • 인터넷의 발전과 더불어 기하급수적으로 늘어난 디지털 정보를 대상으로 사용자의 요구를 만족시키는 정보검색을 하기 위해 자연어처리 기술이 많이 응용되고 있다. 본 논문에서는 정보검색에 자연어 처리 기술 중, 의미중의성 해소(WSD) 기술을 적용하였다. HANTEC 12만 문서를 대상으로 9개의 중의성 단어를 실험한 결과 67.8%의 정확률을 보였다. 본 실험을 통해 WSD의 오분석이 정보검색의 정확률에 상당히 민감한 결과를 초래함을 알 수 있었다. 그리고, WSD 기술이 정보검색에 적용된 떼 발생할 수 있는 여러 문제점들에 대하여 논의하였고, 이 문제점의 근원적인 해결방안은 WSD기술의 발전에 있다는 것을 알 수 있었다.

  • PDF