감성 분석은 특정 대상에 대한 의견을 수집하고 분류하는 과정이다. 그러나 자연어에 담김 사람의 주관을 파악하는 일은 어려운 일로써, 기존의 감성 단어 사전이나 확률 모델은 이러한 문제를 해결하기 어려웠으나 딥 러닝의 발전으로 문제 해결을 시도할 수 있게 됐다. 본 논문에서는 사전 학습된 문맥 표현을 한국어 감성 분석에 활용하여 더 높은 성능을 낼 수 있음을 보인다.
한국음향학회 1997년도 영남지회 학술발표회 논문집 Acoustic Society of Korean Youngnam Chapter Symposium Proceedings
/
pp.9-12
/
1997
대부분의 음성 파?너 추정 기법은 통신 채널의 주파수 응답에 의해 쉽게 영향을 받는다. 이 논문에서 우리는 음성에서 그러한 안정상태의 스펙트럼 계수에 있어서 좀더 강인한 기법인 RASTA-PLP 방법을 적용하여 파라미터를 추출하고 그 파라미터를 연속 HMM 인식기의 입력으로 사용하여 문맥독립 음소 모델을 훈련하는 과정에서 최적의 모델을 찾게 된다. 여기서는 ETRI 445 DB에 RASTA-PLP를 적용하였을 때 가장 좋은 성능을 나타내는 재추정 횟수와 mixutre 수를 찾는 데 목표를둔다. 문맥독립음소모델은 한국어의 발성학적 근거를 토대로 하고 여기에 묵음(silence)을 추가하여 총 40개로 정의하였다. 문맥독립 음소모델은 3개의 상태를 가지는 전형적인 left-to right CHMM(Continuous Hidden Markov Model)을 이용하여 훈련한다. 그리고 훈련시간을 줄이기 위해 Viterbi beam 탐색법을 적용한다.
한국음향학회 1998년도 제15회 음성통신 및 신호처리 워크샵(KSCSP 98 15권1호)
/
pp.74-77
/
1998
우리는 C++를 이용하여 음성인식기를 구현하여 기존의 C를 이용한 경우에 비하여 30% 수준의 소스로 표현하였고 인식기의 공동개발, 확장 및 개선, 기술 전수 등이 용이하게 되었으며 이를 음성인식 엔진 및 음성인식 연구를 위한 툴로 사용할 수 있게 되었다. 이 인식기의 특징으로는 연속 음성 및 대화체 음성을 인식할 수 있으며 trigram 언어 모델을 사용하였고 문맥 종속 음소 모델링에서는 기존의 triphone 보다 넓은 문맥을 고려한 n-phone context modeling을 사용하였으며 모델의 선정에는 음성학적 지식을 기반으로 한 질문을 사용한 decision tree를 사용하여 훈련에 나타나지 않은 단어나 문맥인 경우라도 가장 가까운 모델을 선정할 수 있게 하였다. 또, tree lexicon을 사용하여 속도를 개선하였으며 state 단위의 모델 공유를 통해 제한된 데이터를 이용하여 더 많은 모델을 훈련할 수 있어 성능을 개선하였다. 상용화를 염두에 두고 pc에서 구현하였다.
본 논문에서는 한국전자통신연구원에서 제공된 대어휘 음성DB를 이용하여 HM-Net(Hidden Markov Network) 음성인식 시스템의 성능평가를 수행하였다. 음향모델 작성은 음성인식에서 널리 사용되고 있는 통계적인 모델링 방법인 HMM(Hidden Markov Model)을 개량한 HM-Net을 도입하였다 HM-Net은 PDT-SSS 알고리즘에 의해 문맥방향과 시간방향의 상태분할을 수행하여 생성되는데, 특히 문맥방향 상태분할의 경우 학습 음성데이터에 출현하지 않는 문맥정보를 효과적으로 표현하기 위해 음소결정트리를 채용하고 있으며, 시간방향 상태분할의 경우 학습 음성데이터에서 각 음소별 지속시간 정보를 효과적으로 표현하기 위한 상태분할을 수행한다. 이러한 상태분할을 수행하여 파라미터를 공유하게 되며 최적인 모델 네트워크를 작성하게 된다. 대어휘 음성데이터를 이용하여 음향모델을 작성하고 인식실험을 수행한 결과, 100명의 100단어와 60문장에 대해 평균 97.5%, 96.7%의 인식률을 보였다.
한국어의 비재귀 명사구 즉 기반 명사구(basehp)를 인식하는 알고리즘을 제시한다. 본 논문에서는 한개의 주어진 학습 알고리즘에 대해 문맥 윈도우의 크기와 문맥 윈도우의 위치를 달리해 가면서 학습시킨다 이러한 방법을 통해 서로 다른 정보를 바탕으로 한 기반 명사구 인식을 수행할 수 있으며, 그 결과서로 다른 여러 개의 결과들을 생성할 수 있다. 본 논문에에서는 이렇게 얻어진 여러 개의 인식 결과들을 적절한 방법으로 결합하여 한국어에서 91% 이상의 높은 기반명사구 인식 정확도를 얻어낼 수 있다. 15만 단어 규모의 국어정보베이스의 말뭉치를 사용했으며 , 학습 알고리즘으로는 메모리 기반 학습 알고리즘 (memory-based learning)을 이용하여 실험하였다.
본 논문은 중규모 어휘인 1500여 단어 실시간 화자 독립 단독어 음성인식 시스템에 대해서 기술한다. 음향 모델은 HMM을 이용하였으며, 음소 모델은 문맥종속 모델인 트라이폰을 사용하였다. 이 시스템은 텍스트로부터 쉽게 사전을 구성할 수 있는 유연성을 갖는다. 선정된 단어는 주식시장에 상장되어 있는 1456개의 회사명으로 비교적 혼동하기 쉬운 단어들을 많이 포함한 사전이다. 실시간 처리를 위한 알고리즘들 중 인식율을 크게 저하시킬 가능성이 있는 기법들은 제외하였다. 여기에 트리 빔과 음소 빔을 적용하면서 topN을 적용하였으며 새로운 스코아 캐쉬 기법을 고안하였다. 특별히 스코아 캐쉬 기법은 인식율에는 전혀 영향을 미치지 않으면서 계산량을 $38\%$나 줄여주었다. 이런 기법들을 적용하여 실시간 음성인식을 구현할 수 있었다. Intel 450M CPU가 장착되어 있는 리눅스 시스템에서 평균 1.98초의 응답 시간을 보였다.
개체명 인식은 질의 응답, 정보 검색, 기계 번역 등 다양한 분야에서 유용하게 사용되고 있는 기술이다. 개체명 인식의 경우 인식의 대상인 개체명이 대부분 새롭게 등장하거나 기존에 존재하는 단어와 중의적 의미를 갖는 고유한 단어라는 문제점이 있다. 본 논문에서는 한국어 개체명 인식에서 미등록어 및 중의성 문제를 해결하기 위한 딥 러닝 모델을 제안한다. 제안하는 모델은 형태소 및 자음/모음을 이용하여 새롭게 등장하는 단어에 대한 기존 단어와의 형태적 유사성을 고려한다. 또한 임베딩 및 양방향 LSTM-RNNs-CRF 모델을 이용하여, 각 입력 값의 문맥에 따른 의미적 유사성, 문법적 유사성을 고려한다. 제안하는 딥 러닝 모델을 사용하여, F1 점수 85.71의 결과를 얻었다.
초대 이승만 대통령으로부터 제18대 박근혜 대통령 취임사를 네트워크 기반으로 분석하였다. 연합뉴스에서 제공하는 데이터베이스는 역대 대통령 취임사 단어구름으로 보여줌으로써 키워드를 파악할 수 있도록 하였다. 이 경우 특정 단어의 등장 횟수에 비례하여 중심 단어를 찾아주기 때문에 취임사 전체에 흐르는 문맥이나 대통령의 의중을 반영하지 못한다. 이러한 문제를 해결하기 위하여 본 연구에서 18개 대통령 취임사에 등장하는 키워드 네트워크를 구축하였다. 네트워크상에서 허브(hub)에 해당하는 단어를 연결하면 대통령의 의도나 통치 방향을 파악할 수 있다. 대한민국의 18개 대통령 취임사는 네트워크의 동적 변화를 분석할 수 있는 좋은 자료다. 초대 취임사 네트워크에 두 번째 취임사 네트워크를 추가하여 점진적으로 확장되는 네트워크를 구축하여 동적변화를 분석하였다. 네트워크 동적 분석 결과는 시대의 흐름에 따른 대통령 통치 방향과 변화가 담겨져 있기에 대한민국 현대사 흐름을 파악하는데 기여하는 것으로 나타났다. 이제 복잡계를 이해하는 방법의 하나인 네트워크에 관한 연구는 사회현상, 자연현상, 생명현상을 넘어서 대통령 취임사에 이르기까지 다양한 영역에 함축된 복잡한 현상을 이해하려는 시도에 방법론적 실마리를 제공하고 있다.
개체명 인식은 질의 응답, 정보 검색, 기계 번역 등 다양한 분야에서 유용하게 사용되고 있는 기술이다. 개체명 인식의 경우 인식의 대상인 개체명이 대부분 새롭게 등장하거나 기존에 존재하는 단어와 중의적 의미를 갖는 고유한 단어라는 문제점이 있다. 본 논문에서는 한국어 개체명 인식에서 미등록어 및 중의성 문제를 해결하기 위한 딥 러닝 모델을 제안한다. 제안하는 모델은 형태소 및 자음/모음을 이용하여 새롭게 등장하는 단어에 대한 기존 단어와의 형태적 유사성을 고려한다. 또한 임베딩 및 양방향 LSTM-RNNs-CRF 모델을 이용하여, 각 입력 값의 문맥에 따른 의미적 유사성, 문법적 유사성을 고려한다. 제안하는 딥 러닝 모델을 사용하여, F1 점수 85.71의 결과를 얻었다.
어의 중의성 문제는 자연어 분석 과정에서 공통적으로 발생하는 문제로 한 가지의 단어 표현이 여러 의미로 해석될 수 있기 때문에 발생한다. 이를 해결하기 위한 어의 중의성 해소는 입력 문장 중 여러 개의 의미로 해석될 수 있는 단어가 현재 문맥에서 어떤 의미로 사용되었는지 분류하는 기술이다. 어의 중의성 해소는 입력 문장의 의미를 명확하게 해주어 정보검색의 성능을 향상시키는데 중요한 역할을 한다. 본 논문에서는 딥러닝을 이용하여 어의 중의성 해소를 수행하며 기존 모델의 단점을 극복하여 입력 문장에서 중의적 단어를 판별하는 작업과 그 단어의 의미를 분류하는 작업을 동시에 수행하는 모델을 제안한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.