기하급수적으로 증가하는 인터넷의 정보량에서 최적의 정보를 찾고자 하는 사용자의 요구가 증가함에 따라 개별적 사용자에게 필요한 정보만을 제공하는 것이 필요하다. 이러한 사용자의 요구를 충족시키기 위해 사용자의 행동을 관찰하고 학습하여 사용자 대신 문서를 수집하는 웹 문서 추천 에이전트의 필요성이 대두되었다. 본 논문에서는 웹 문서 추천에이전트에서 사용되는 프로파일을 효과적으로 생성하고 학습하기 위한 문서 표현 방법, 특징 선택법을 제안한다. 제안된 문서 표현 방법은 슬라이딩 윈도우 방법을 통해 인접한 단어쌍의 문맥 정보를 이용하고, 의존 구조를 이용하며 사용자의 관심 변화에 빨리 적응 할 수 있도록 시간에 대한 가중치를 반영한다. 제안된 방법으로 프로파일을 구성한 웹 문서 추천 에이전트는 사용자의 관심 분야를 효과적으로 반영하고 관심 변화에 빨리 적응하여 사용자에게 알맞은 문서를 추천한다.
의미 모호성 해소는 문맥상의 한 단어의 올바른 의미를 밝히는 것으로, 대부분의 자연언어처리 응용에서 가장 중요한 문제 중 하나이다. 말뭉치로부터 얻어진 예제로부터 의미 모호성 해소 방법을 학습하기 위해서는 답이 알려져 있는 대량의 학습 예제가 필요하지만, 답이 알려져 있는 예제를 구하는 일은 사람의 간섭을 필요로 하므로 매우 비싼 작업이다. 본 논문에서는 답이 알려져 있는 학습 예제로 어느 정도 학습한 수, 답이 알려져 있지 않은 예제로 학습을 보충하는 방법을 통해 사람의 간섭을 최소화하였다. 결정트리 학습을 통한 한국어 명사에 대한 의미 결정 실험 결과, 본 논문에서 제안한 방법은 가장 많은 분포를 보이는 의미를 선택하는 경우보다 평균적으로 33.6%의 성능 향상을 보이며, 이는 전체 학습 예제의 답이 모두 알려져 있는 경우와 거의 비슷한 결과이다. 따라서, 한국어와 같이 신뢰할 만한 의미 부착 말뭉치가 없는 경우에 본 논문에서 제시된 방법은 매우 효율적이다.
본 논문은 전화음성 서비스 시스템의 핵심 기술인 멀티채널 음성인식 시스템의 구현에 대해서 기술하고자 한다. 구현한 시스템은 전화망 인터페이스 모듈, 음성입력 모듈, 음성인식 모듈, 및 서비스 제어모듈로 구성되어 있다. 전화망 인터페이스 모듈은 전화망을 이용한 교환기와의 호 처리 및 이벤트 처리를 담당하며, 전화망 접속카드와 밀접한 관계를 가지고 있다. 음성입력 및 인식 모들은 호 접속이 이루어진 채널로부터 음성을 입력받아 단어인식 기능을 수행하는 부분으로서 멀티 채널을 수용할 수 있는 구조로 설계되어 있다. 음성인식 모델은 문맥 종속형 CHMM 모델이며, 각각의 HMM 모델은 3-state, skip path 로 구성되어 있다. 음성인식 모듈내의 함수들은 모두 re-entrant 하도록 구성함으로써 멀티 채별이 가능하며, 각각의 채널은 모두 독립적인 메모리 공간에서 동작하도록 되어있다. 이와 같은 멀티채널 전화음성인식 시스템은 Dialogic보드를 이용하여 Windows NT에서 동작하도록 구현하였다. 실험결과, 구현된 시스템은 실시간으로 상용서비스가 가능한 인식율을 보였으며 원활한 멀티채널 지원이 가능하였다.
음차표기란 외국어의 발음을 자국어로 표기하는 것으로 정의된다. 영-한 자동 음차표기 방법에는 직접방식, 피봇방식, 혼합방식이 있다. 기존의 영-한 음차표기 연구들은 직접방식에 기반한 연구들이 대부분이었다. 하지만, 음차표기는 직접방식에서 사용하는 단순한 자소 대 자소변환 작업이라기보다는 자소의 음성적 변환 작업이라고 할 수 있다. 따라서 자소뿐만 아니라 음소 등 음성적 정보가 매우 중요하다. 본 논문에서는 이러한 특성을 이용하여 자소 정보뿐만 아니라 음소 정보를 이용한 음차표기 기법을 제안한다. 주어진 자소와 음소 및 자소와 음소의 문맥정보를 이용하여 한국어 음차표기를 생성하는 본 논문의 기법은 약 60%의 단어정확도를 나타내었다.
영어권에서는 통계적 기반 의미 오류 검사기에 대한 연구가 활발하게 진행되었으나 한국어에서는 자주 나타나는 오류를 중심으로 오류 단어를 검사할 문맥이나 공기정보를 갖는 규칙 기반의 연구가 이루어져왔다. 본 논문에서는 표제어나 사전 기반 범주화 정보로 표현되고 있는 기존 문법 검사기의 성능을 개선하는 방안으로 한국어 명사 어휘 의미망인 KorLex를 활용하는 방법을 연구한다. 특히, 용언은 목적어나 주어에 사용되는 명사의 표제어가 의미 제약 조건으로 사용되는 예가 많다. 본 논문에서는 용언의 의미 제약 조건을 명사 표제어 단위에서 명사 의미 그룹(class) 단위로 확대하여 문법 검사기의 의미 오류 검사 규칙의 의미 오류 제약 조건을 일반화 하는 방안을 연구한다.
감정 분석은 문서의 주관적인 감정, 의견, 기분을 파악하기 위한 방법으로 소셜 미디어, 온라인 리뷰 등 다양한 분야에서 활용된다. 문서 내 텍스트가 나타내는 단어와 문맥을 기반으로 감정 수치를 계산하여 긍정 또는 부정 감정을 결정한다. 2015년에 구축된 네이버 영화평 데이터 20 만개에 12 만개를 추가 구축하여 감정 분석 연구를 진행하였으며 언어 모델로는 최근 자연어처리 분야에서 높은 성능을 보여주는 BERT 모델을 이용하였다. 감정 분석 기법으로는 LSTM(Long Short-Term Memory) 등 기존의 기계학습 기법과 구글의 다국어 BERT 모델, 그리고 KoBERT 모델을 이용하여 감정 분석의 성능을 비교하였으며, KoBERT 모델이 89.90%로 가장 높은 성능을 보여주었다.
상호참조해결은 문서 내에 등장하는 모든 멘션 중에서 같은 의미를 갖는 대상(개체)들을 하나의 집합으로 묶어주는 자연어처리 태스크이다. 한국어 상호참조해결의 학습 데이터는 영어권에 비해 적은 양이다. 데이터 증강 기법은 부족한 학습 데이터를 증강하여 기계학습 기반 모델의 성능을 향상시킬 수 있는 방법 중 하나이며, 주로 규칙 기반 데이터 증강 기법이 연구되고 있다. 그러나 규칙 기반으로 데이터를 증강하게 될 경우 규칙 조건을 만족하지 못했을 때 데이터 증강이 힘들다는 문제점과 임의로 단어를 변경 혹은 삭제하는 과정에서 문맥에 영향을 주는 문제점이 발생할 수 있다. 따라서 본 논문에서는 BERT의 MLM(Masked Language Model)을 이용하여 기존 규칙기반 데이터 증강 기법의 문제점을 해결하고 한국어 상호참조해결 데이터를 증강하는 방법을 소개한다. 실험 결과, ETRI 질의응답 도메인 상호참조해결 데이터에서 CoNLL F1 1.39% (TEST) 성능 향상을 보였다.
자연어 표상은 자연어가 가진 정보를 컴퓨터에게 전달하기 위해 표현하는 방법이다. 현재 자연어 표상은 학습을 통해 고정된 벡터로 표현하는 것이 아닌 문맥적 정보에 의해 벡터가 변화한다. 그 중 BERT의 경우 Transformer 모델의 encoder를 사용하여 자연어를 표상하는 기술이다. 하지만 BERT의 경우 학습시간이 많이 걸리며, 대용량의 데이터를 필요로 한다. 본 논문에서는 빠른 자연어 표상 학습을 위해 의미 정보와 BERT를 결합한 개념 언어 모델을 제안한다. 의미 정보로 단어의 품사 정보와, 명사의 의미 계층 정보를 추상적으로 표현했다. 실험을 위해 ETRI에서 공개한 한국어 BERT 모델을 비교 대상으로 하며, 개체명 인식을 학습하여 비교했다. 두 모델의 개체명 인식 결과가 비슷하게 나타났다. 의미 정보가 자연어 표상을 하는데 중요한 정보가 될 수 있음을 확인했다.
질문 생성이란 구절이 입력되면 구절에서 답을 찾을 수 있는 질문을 자동으로 생성하는 작업으로 교육용 시스템, 대화 시스템, QA 시스템 등 다양한 분야에서 중요한 역할을 한다. 질문 생성에서 정답의 단어가 질문에 포함되는 문제점을 해결하기 위해 구절과 정답을 분리한다. 하지만 구절과 정답을 분리하게 되면 구절에서 정답의 정보가 손실되고, 정답에서는 구절의 문맥 정보가 손실되어 정답 유형에 맞는 질문을 생성할 수 없는 문제가 발생된다. 본 논문은 이러한 문제를 해결하기 위해 분리된 정답과 구절의 정보를 연결시켜주는 정답과 구절의 공동 주의 집중 계층을 제안한다. 23,658개의 질문-응답 쌍의 말뭉치를 이용한 실험에서 정답과 구절의 공동 주의 집중 계층이 성능 향상에 기여해 우수한 성능(BLEU-26.7, ROUGE-57.5)을 보였다.
문맥기반 사전학습 단어 임베딩이 다양한 분야 적용되어 훌륭한 성능을 보여주고 있다. 본 논문에서는 사전학습한 XLNet 모델을 구문분석에 적용하였다. XLNet은 문장에서 생성 가능한 모든 후보에 대해 트랜스 포머를 기반으로 하는 사전학습을 진행한다. 따라서 문장 전체 정보를 필요로 하는 구문분석에 특히 유용하다. 본 논문에서는 한국어 특성을 반영하기 위하여 형태소 분석을 시행한 107.2GB 크기의 대용량 데이터를 사용해 학습을 진행하였다. 본 논문에서 제안한 모델을 세종 구문 코퍼스에 적용한 결과, UAS 91.93% LAS 89.30%의 성능을 보였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.