• 제목/요약/키워드: 단어 군집화

검색결과 81건 처리시간 0.022초

논문 검색 결과의 효과적인 브라우징을 위한 단어 군집화 기반의 결과 내 군집화 기법 (A Search-Result Clustering Method based on Word Clustering for Effective Browsing of the Paper Retrieval Results)

  • 배경만;황재원;고영중;김종훈
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제37권3호
    • /
    • pp.214-221
    • /
    • 2010
  • 검색 결과 내 군집화(search-result clustering)는 검색 엔진으로부터 검색된 결과 내에서 비슷한 문서를 자동으로 군집화하는 기법이다. 본 논문에서는 논문 검색 서비스에 전문화된 새로운 결과 내 군집화 기법을 제안한다. 제안하는 시스템은 '범주체계생성기(Category Hierarchy Generation System)'와 '논문군집기(Paper Clustering System)'로 구성되어있다. '범주체계생생기'는 KOSEF의 연구 범주 체계를 이용하여 분야 시소러스라 불리는 범주 체계를 생성하고, K-means 알고리즘을 이용한 단어 군집화 알고리즘을 사용하여 분야 시소러스의 키워드 집합을 확장한다. '논문군집기'는 top-down 방식과 bottom-up 방식을 이용하여 각 논문의 범주를 결정한다. 제안하는 시스템은 논문 검색 서비스와 같은 전문 분야에 대한 검색 서비스에 유용하게 사용될 수 있을 것이다.

SIFT를 이용한 문서 영상에서의 단어 검색 알고리즘 (Word Spotting Algorithms Using SIFT in Document Images)

  • 이득용;전효종;오일석
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2011년도 한국컴퓨터종합학술대회논문집 Vol.38 No.1(A)
    • /
    • pp.488-490
    • /
    • 2011
  • 본 논문에서는 문서 영상에서 글자 분할 및 인식이 필요 없는 단어 검색 알고리즘을 제안한다. 글자 분할을 하지 않고 검색하기 위해 영상 검색에 사용되는 SIFT특징을 이용하였다. 제안하는 알고리즘은 사용자가 입력한 질의어를 질의 영상으로 변환하고, 질의 영상에서 SIFT특징을 추출한다. 추출된 특징은 문서영상에서 추출한 특징과 매칭을 통해 매칭점 쌍을 생성한다. 생성된 매칭점 쌍들을 군집화 조건에 따라 군집화 한다. 군집화는 질의 영상과 지리적 분포가 유사하게 군집화 되도록 설계되었다. 생성된 군집은 군집에 포함된 특징점의 개수가 많을수록 질의 영상과 유사하다. 따라서 N개 이상의 원소를 가지는 군집을 결과로 출력한다. 실험한 결과 제안하는 알고리즘의 가능성을 확인할 수 있었다.

BERT 레이어에 따른 동형이의어 의미 표현 비교 (Comparison of Homograph Meaning Representation according to BERT's layers)

  • 강일민;최용석;이공주
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2019년도 제31회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.161-164
    • /
    • 2019
  • 본 논문은 BERT 모델을 이용하여 동형이의어의 단어 표현(Word Representation) 차이에 대한 실험을 한다. BERT 모델은 Transformer 모델의 인코더 부분을 사용하여 양방향을 고려한 단어 예측과 문장 수준의 이해를 얻을 수 있는 모델이다. 실험은 동형이의어에 해당되는 단어의 임베딩으로 군집화를 수행하고 이를 Purity와 NMI 점수로 계산하였다. 또한 각 단어 임베딩 사이를 코사인거리(Cosine Distance)로 계산하고 t-SNE를 통해 계층에 따른 변화를 시각화하였다. 군집된 결과는 모델의 중간 계층에서 점수가 가장 높았으며, 코사인거리는 8계층까지는 증가하고 11계층에서 급격히 값이 변하는 것을 확인할 수 있었다.

  • PDF

연결 성분 간 간격 측정에 의한 필기체 수표 금액 문장에서의 단어 추출 (Word Separation in Handwritten Legal Amounts on Bank Check by Measuring Gap Distance Between Connected Components)

  • 김인철
    • 한국지능시스템학회논문지
    • /
    • 제14권1호
    • /
    • pp.57-62
    • /
    • 2004
  • 본 논문에서는 연결 성분간의 공간적 간격에 기반하여 수표 영상 내의 필기체 문장 금액에서 단어를 효율적으로 추출하기 위한 방법을 제안한다. 인접한 연결 성분간의 거리측정을 위한 기존의 방식들은 과대추정 또는 과소추정 문제로 인한 단어 분리 오류를 초래할 수 있으나 본 논문에서는 이러한 문제를 줄이기 위해 각 측정 방식들을 수정 보완하였다. 또한 본 논문에서는 서로 다른 형태의 세 가지 거리 측정법들을 효과적으로 결합하여 각 개별 측정법이 가지는 단점을 상호 보완하고 전체 단어 추출 성능을 좀더 향상시킬 수 있는 4-클래스 군집화에 기반한 결합 방법을 새로이 제안하였다. 분장 금액에 대한 단어 추출 실험 결과로부터 수정된 각 거리 측정법이 대응되는 기존의 측정법에 비해 2-3% 정도 향상된 단어 분리율을 보임을 확인하였다. 또한 제안된 4-클래스 군집화에 기반한 결합 방식은 각 측정 방식에서 개별적으로 발생하는 에러뿐만 아니라 두 개의 방식에서 동시에 나타나는 에러도 효율적으로 감소시킴으로서 전체 단어 분리 성능을 향상 시킬수 있었다.

GAP 군집화에 기반한 필기 한글 단어 분리 (Word Segmentation in Handwritten Korean Text Lines based on GAP Clustering)

  • 정선화;김수형
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제27권6호
    • /
    • pp.660-667
    • /
    • 2000
  • 본 논문에서는 필기 한글 문자열 영상에 대한 단어 분리 방법을 제안한다. 제안된 방법은 gap 의 크기 정보를 사용하여 단어를 분리하는데, 이때 gap은 문자열 영상을 수직방향으로 투영한 후 흰-런 (white-run)을 찾음으로써 구할 수 있다. 문자열 영상으로부터 얻어지는 gap들의 크기를 측정한 후, 각각의 gap을 단어와 단어사이에 존재하는 gap과 문자와 문자사이에 존재하는 gap 중 하나로 분류한다. 본 논문에서는 필기 영문 문자열의 단어 분리를 위해 제안된 기존의 세 가지 거리 척도를 채택하고 군집화에 기반한 세 가지 분류방법을 적용하여 한글 문자열의 단어 분리를 위한 최적의 조합을 선정하였다. 우편봉투 상에 작성된 주소열로부터 수작업으로 추출한 305 개의 문자열 영상을 사용하여 실험한 결과 BB(bounding box) 거리를 사용하여 순차적 군집 방법을 적용하는 경우 3 순위까지의 누적 단어 분리 성공률이 88.52% 로서 가장 우수한 성능을 보여 주었다. 또한 하나의 문자열 영상에 대한 단어 분리 속도는 약 0.05초이다.

  • PDF

문서의 주제어별 가중치 부여와 단어 군집을 이용한 한국어 문서 자동 분류 시스템 (An Automatic Classification System of Korean Documents Using Weight for Keywords of Document and Word Cluster)

  • 허준희;최준혁;이정현;김중배;임기욱
    • 정보처리학회논문지B
    • /
    • 제8B권5호
    • /
    • pp.447-454
    • /
    • 2001
  • 새로운 문서를 기존에 존재하는 클래스들에 할당하는 방법을 문서의 자동 분류라고 한다. 문서의 자동 분류는 뉴스 그룹의 기사분류, 웹 문서의 범주화, 전자 메일의 순서화, 사용자의 관심을 학습하여 보다 정확한 정보 검색을 제시하는데 사용될수 있다. 본 논문에서는 한국어 문서분류의 정확도를 높이기 위하여 문서내의 모든 단어들에 대한 확률값을 사용하여, 문서를 분류하는 기존의 방법과 달리 문서의 주제어를 선정하여 주제어로 선정된 단어들에 가중치를 부여하고 그렇지 않은 단어들에 대해서는 제거하너가 낮은 가중치를 부여하는 베이지안 분류자를 사용한다. 문서에는 특징으로 추출된 단어가 적어 문서를 분류하기 위한 만족할 만한 정보를 제공하지 못할 경우에 부족한 문서의 특징을 보충하기 위하여 말뭉치로부터 자동 단어 군집화를 통해 형성된 연관 단어 군집을 사용한다. 이러한 방법을 한국어 문서에 적용한 결과 기존의 베이지안 확률을 사용한 분류법보다 향상된 분류 정확도를 얻을 수 있었다.

  • PDF

온톨로지 개념 합병 기반 문서 군집화 기법 (Text Clustering Algorithm Based on Ontology Concepts Combination)

  • 관향동;김우생
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2012년도 추계학술대회
    • /
    • pp.722-724
    • /
    • 2012
  • 문서 군집화를 통하여 문서를 효율적으로 조직, 관리, 검색 할 수 있다. 일반적으로 문서 군집화는 많은 단어와 개념들을 포함하고 있기 때문에 차원이 큰 벡터 공간 모델에서 군집화를 수행한다. 본 논문에서 문서 집합에 대응하는 온톨로지를 이용하여 문서 벡터 공간의 차원을 줄여 효율적으로 군집화하는 방법을 제안하고, 실험을 통하여 기존 방법보다 우수함을 보인다.

  • PDF

음소 군집화 기법을 이용한 어휘독립음성인식의 음소모델링 (Subword Modeling of Vocabulary Independent Speech Recognition Using Phoneme Clustering)

  • 구동욱;최준기;윤영선;오영환
    • 한국음향학회:학술대회논문집
    • /
    • 한국음향학회 2000년도 학술발표대회 논문집 제19권 2호
    • /
    • pp.33-36
    • /
    • 2000
  • 어휘독립 고립단어인식은 미리 훈련된 부단어(sub-word) 단위의 음향모델을 이용하여 수시로 변하는 인식대상어휘를 인식하는 것이다. 본 논문에서는 소용량 음성 데이터베이스를 이용하여 어휘독립음성인식 시스템을 구성하였다. 소용량 음성 데이터베이스에서 미관측문맥 종속형 부단어에 대한 처리에 효과적인 백오프 기법을 이용한 음소 군집화 방법으로 문턱값을 변화시키며 인식실험을 수행하였다. 그리고 훈련용 데이터의 부족으로 인하여 문맥 종속형 부단어 모델이 훈련용 데이터베이스로 편중되는 문제를 deleted interpolation 방법을 이용하여 문맥 종속형 부단어 모델과 문맥 독립형 부단어 모델을 병합함으로써 해결하였다. 그 결과 음성인식의 성능이 향상되었다.

  • PDF

텍스트 영역에 대한 단어 단위 분할 시스템 (A System for the Decomposition of Text Block into Words)

  • 정창부;곽희규;정선화;김수형
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2000년도 추계학술발표논문집 (상)
    • /
    • pp.293-296
    • /
    • 2000
  • 본 논문에서는 주제어 인식에 기반한 문서영상의 검색 및 색인 시스템에 적용하기 위한 단어 단위 분한 시스템을 제안한다. 제안 시스템은 영상 전처리, 문서 구조 분석을 통해 추출된 텍스트 영역을 입력으로 단어 단위 분할을 수행하는데, 텍스트 영역에 대해 텍스트 라인을 분할하고 분할된 텍스트 라인을 단어 단위로 분할하는 계층적 접근 방법을 사용한다. 텍스트라인 분할은 수평 방향 투영 프로파일을 적용하여 분할 지점을 구한다. 그리고 단어 분할은 연결요소들을 추출한 후 연결요소간의 gap 정보를 구하고, gap 군집화 기법을 사용하여 단어 단위 분한 지점을 구한다. 이때 단어 단위 분할의 성능을 저하시키는 특수기호에 대해서는 휴리스틱 정보를 이용하여 검출한다. 제안 시스템의 성능 평가는 50개의 텍스트 영역에 적용하여 99.83%의 정확도를 얻을 수 있었다.

  • PDF

유의어 사전 기반 환경기술 검색 시스템 설계 (Design of environmental technology search system using synonym dictionary)

  • ;;구영현;유성준
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2020년도 하계학술대회
    • /
    • pp.582-586
    • /
    • 2020
  • 국가기후기술정보시스템은 국내 환경기술과 국외의 수요기술 정보를 제공하는 검색 시스템이다. 그러나 기존의 시스템은 유사한 뜻을 가진 단일 단어와 복수 단어들을 모두 식별하지 못하기에 유의어를 입력했을 경우 검색 결과가 다르다. 이런 문제점을 해결하기 위해 본 연구에서는 유의어 사전을 기반으로한 환경기술 검색 시스템을 제안한다. 이 시스템은 Word2vec 모델과 HDBSCAN(Hierarchical Density-Based Spatial Clustering of Application with Noise) 알고리즘을 이용해 유의어 사전을 구축한다. Word2vec 모델을 이용해 한국어와 영어 위키백과 코퍼스에 대해 형태소 분석을 진행한 후 단일 단어와 복수 단어를 포함한 단어를 추출하고 벡터화를 진행한다. 그 다음 HDBSCAN 알고리즘을 이용해 벡터화된 단어를 군집화 해주고 유의어를 추출한다. 기존의 Word2vec 모델이 모든 단어 간의 거리를 계산하고 유의어를 추출하는 과정과 대비하면 시간이 단축되는 역할을 한다. 추출한 유의어를 통합해 유의어 사전을 구축한다. 국가기후기술정보시스템에서 제공하는 국내외 기술정보, 기술정보 키워드와 구축한 유의어 사전을 Multi-filter를 제공하는 Elasticsearch에 적용해 최종적으로 유의어를 식별할 수 있는 환경기술 검색 시스템을 제안한다.

  • PDF