• Title/Summary/Keyword: 단어벡터

Search Result 300, Processing Time 0.018 seconds

Korean Phoneme Sequence based Word Embedding (한국어 음소열 기반 워드 임베딩 기술)

  • Chung, Euisok;Jeon, Hwa Jeon;Lee, Sung Joo;Park, Jeon-Gue
    • Annual Conference on Human and Language Technology
    • /
    • 2017.10a
    • /
    • pp.225-227
    • /
    • 2017
  • 본 논문은 한국어 서브워드 기반 워드 임베딩 기술을 다룬다. 미등록어 문제를 가진 기존 워드 임베딩 기술을 대체할 수 있는 새로운 워드 임베딩 기술을 한국어에 적용하기 위해, 음소열 기반 서브워드 자질 검증을 진행한다. 기존 서브워드 자질은 문자 n-gram을 사용한다. 한국어의 경우 특정 단음절 발음은 단어에 따라 달라진다. 여기서 음소열 n-gram은 특정 서브워드 자질의 변별력을 확보할 수 있다는 장점이 있다. 본 논문은 서브워드 임베딩 기술을 재구현하여, 영어 환경에서 기존 워드 임베딩 사례와 비교하여 성능 우위를 확보한다. 또한, 한국어 음소열 자질을 활용한 실험 결과에서 의미적으로 보다 유사한 어휘를 벡터 공간상에 근접시키는 결과를 보여 준다.

  • PDF

Named-entity Recognition Using Bidirectional LSTM CRFs (Bidirectional LSTM CRFs를 이용한 한국어 개체명 인식)

  • Song, Chi-Yun;Yang, Sung-Min;Kang, Sangwoo
    • Annual Conference on Human and Language Technology
    • /
    • 2017.10a
    • /
    • pp.321-323
    • /
    • 2017
  • 개체명 인식은 문서 내에서 고유한 의미를 갖는 인명, 기관명, 지명, 시간, 날짜 등을 추출하여 그 종류를 결정하는것을 의미한다. Bidirectional LSTM CRFs 모델은 연속성을 갖는 데이터에 가장 적합한 RNN기반의 심층 학습모델로서 개체명 인식 연구에 가장 우수한 성능을 보여준다. 본 논문에서는 한국어 개체명 인식을 위하여 Bidirectional LSTM CRFs 모델을 사용하고, 입력 자질로 단어뿐만 아니라 품사 임베딩 모델과, 개체명 사전을 활용하여 입력 자질을 구성한다. 또한 입력 자질에 대한 벡터의 크기를 최적화 하여 기본 모델보다 성능이 향상되었음을 증명하였다.

  • PDF

Real-time Unknown Word Identification Using Support Vector Machine For Chinese Text-to-Speech (중국어 음성합성을 위한 지진 벡터 기반 실시간 미등록어 처리)

  • Ha, Ju-Hong;Zheng, Yu;Lee, Gary G.
    • Annual Conference on Human and Language Technology
    • /
    • 2003.10d
    • /
    • pp.267-272
    • /
    • 2003
  • 음성 합성 시스템 구축에 있어서 입력 텍스트를 정확한 발음 표기로 변환하는 것은 매우 중요하다. 중국어에는 하나의 한자가 의미나 사용에 따라 다르게 발음되는 다음자(polyphony)들이 존재한다. 다음자의 처리는 상당히 복잡한 문제이기 때문에 본 논문에서는 그 중 가장 발음에 영향을 미치는 요소인 인명과 지명에 대한 미등록어 처리를 수행했다. 무엇보다 실시간 음성 합성 시스템을 위해서는 처리 속도의 향상이 요구된다. 따라서 본 연구에서는 미등록어 후보 구간 선정을 선행하고, 선정된 후보에 대해 추정하는 두 단계로 진행하였다. 후보 구간 선정은 단일 한자 단어(monosyllable word)의 확률과 간단한 패턴들을 이용한다. 최종 선정된 후보의 미등록어 추정은 SVM(Support Vector Machine)을 기반으로 실시하였다.

  • PDF

Efficient Search Algorithms for Continuous Speech Recognition (대용량 연속음성 인식을 위한 효율적인 탐색 알고리즘)

  • 박형민
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1998.06c
    • /
    • pp.75-78
    • /
    • 1998
  • 이 논문에서는 대용량 연속음성 인식에서 인식 속도를 향상시키기 위한 방법들에 대해서 연구하였다. 음성인식에 있어서 많은 양의 계산을 요하는 부분은 관측 확률의 계산과 탐색에 필요한 계산이다. 탐색에 필요한 계산을 줄이기 위하여 빔 탐색법과 phoneme look-ahead기법을 통해 탐색 공간을 줄였으며, 관측 확률을 계산하는데 소요되는 시간을 줄이기 위하여 입력 특징 벡터와 이웃 관계에 있는 가우시안 성분들만 정확한 계산을 하는 VQ에 의한 계산량 감축 방법과 tree-structured pdf 방법을 구현하였다. 3천개의 어휘와 2천여개의 트라이폰 모델로 구성된 연속 음성인식 시스템에서 보통의 Viterbi 빔 탐색법을 적용한 경우에 실시간의 2.73배의 인식 속도로 93.39%의 단어 인식률을 얻을 수 있는데 phoneme look-ahead 기법과 tree-structured pdf 방법을 추가 적용함으로써 비슷한 인식 성능에서 1.55배의 인식 속도를 얻을 수 있었다.

  • PDF

Named-entity Recognition Using Bidirectional LSTM CRFs (Bidirectional LSTM CRFs를 이용한 한국어 개체명 인식)

  • Song, Chi-Yun;Yang, Sung-Min;Kang, Sangwoo
    • 한국어정보학회:학술대회논문집
    • /
    • 2017.10a
    • /
    • pp.321-323
    • /
    • 2017
  • 개체명 인식은 문서 내에서 고유한 의미를 갖는 인명, 기관명, 지명, 시간, 날짜 등을 추출하여 그 종류를 결정하는 것을 의미한다. Bidirectional LSTM CRFs 모델은 연속성을 갖는 데이터에 가장 적합한 RNN기반의 심층 학습모델로서 개체명 인식 연구에 가장 우수한 성능을 보여준다. 본 논문에서는 한국어 개체명 인식을 위하여 Bidirectional LSTM CRFs 모델을 사용하고, 입력 자질로 단어뿐만 아니라 품사 임베딩 모델과, 개체명 사전을 활용하여 입력 자질을 구성한다. 또한 입력 자질에 대한 벡터의 크기를 최적화 하여 기본 모델보다 성능이 향상되었음을 증명하였다.

  • PDF

Korean Phoneme Sequence based Word Embedding (한국어 음소열 기반 워드 임베딩 기술)

  • Chung, Euisok;Jeon, Hwa Jeon;Lee, Sung Joo;Park, Jeon-Gue
    • 한국어정보학회:학술대회논문집
    • /
    • 2017.10a
    • /
    • pp.225-227
    • /
    • 2017
  • 본 논문은 한국어 서브워드 기반 워드 임베딩 기술을 다룬다. 미등록어 문제를 가진 기존 워드 임베딩 기술을 대체할 수 있는 새로운 워드 임베딩 기술을 한국어에 적용하기 위해, 음소열 기반 서브워드 자질 검증을 진행한다. 기존 서브워드 자질은 문자 n-gram을 사용한다. 한국어의 경우 특정 단음절 발음은 단어에 따라 달라진다. 여기서 음소열 n-gram은 특정 서브워드 자질의 변별력을 확보할 수 있다는 장점이 있다. 본 논문은 서브워드 임베딩 기술을 재구현하여, 영어 환경에서 기존 워드 임베딩 사례와 비교하여 성능 우위를 확보한다. 또한, 한국어 음소열 자질을 활용한 실험 결과에서 의미적으로 보다 유사한 어휘를 벡터 공간상에 근접시키는 결과를 보여 준다.

  • PDF

A Study on the Variable Vocabulary Speech Recognition in the Vocabulary-Independent Environments (어휘독립 환경에서의 가변어휘 음성인식에 관한 연구)

  • 황병한
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1998.06e
    • /
    • pp.369-372
    • /
    • 1998
  • 본 논문은 어휘독립(Vocabulary-Independent) 환경에서 별도의 훈련과정 없이 인식대상 어휘를 추가 및 변경할 수 있는 가변어휘(Variable Vocabulary) 음성인식에 관한 연구를 다룬다. 가변어휘 인식은 처음에 대용량 음성 데이터베이스(DB)로 음소모델을 훈련하고 인식대상 어휘가 결정되면 발음사전에 의거하여 음소모델을 연결함으로써 별도의 훈련과정 없이 인식대상 어휘를 변경 및 추가할 수 있다. 문맥 종속형(Context-Dependent) 음소 모델인 triphone을 사용하여 인식실험을 하였고, 인식성능의 비교를 위해 어휘종속 모델을 별도로 구성하여 인식실험을 하였다. Unseen triphone 문제와 훈련 DB의 부족으로 인한 모델 파라메터의 신뢰성 저하를 방지하기 위해 state-tying 방법 중 음성학적 지식에 기반을 둔 tree-based clustering(TBC) 기법[1]을 도입하였다. Mel Frequency Cepstrum Coefficient(MFCC)와 대수에너지에 기반을 둔 3 가지 음성특징 벡터를 사용하여 인식 실험을 병행하였고, 연속 확률분포를 가지는 Hidden Markov Model(HMM) 기반의 고립단어 인식시스템을 구현하였다. 인식 실험에는 22 개 부서명 DB[3]를 사용하였다. 실험결과 어휘독립 환경에서 최고 98.4%의 인식률이 얻어졌으며, 어휘종속 환경에서의 인식률 99.7%에 근접한 성능을 보였다.

  • PDF

KoNLTK: Korean Natural Language Toolkit (KoNLTK: 한국어 언어 처리 도구)

  • Nam, Gyu-Hyeon;Lee, Hyun-Young;Kang, Seung-Shik
    • Annual Conference on Human and Language Technology
    • /
    • 2018.10a
    • /
    • pp.611-613
    • /
    • 2018
  • KoNLTK는 한국어와 관련된 다양한 언어자원과 언어처리 도구들을 파이썬 플랫폼에서 하나의 인터페이스 환경에서 제공하기 위한 언어처리 플랫폼이다. 형태소 분석기, 개체명 인식기, 의존 구조 파서 등 기초 분석 도구들과 단어 벡터, 감정 분석 등 응용 도구들을 제공하여 한국어 텍스트 분석이 필요한 연구자들의 편의성을 증대시킬 수 있다.

  • PDF

A Long Sentence Segmentation for the Efficient Analysis in English-Korean Machine Translation (영한 기계번역에서 효율적인 분석을 위한 긴 문장의 분할)

  • Kim, Yu-Seop
    • Annual Conference on Human and Language Technology
    • /
    • 2005.10a
    • /
    • pp.89-96
    • /
    • 2005
  • 본 연구에서는 영한 기계 번역에서 20단어 이상의 긴 문장을 보다 정확히 분석하기 위하여 문장을 복수개의 의미 있는 절로 분할하고자 한다. 긴 문장은 구문 분석을 시도할 때, 시간적으로 또는 공간적으로 급격히 증가하는 자원을 소모시킨다. 이러한 문제를 해결하기 위하여, 본 연구에서는 긴 문장에서 분할 가능한 지점을 인식하여 이러한 지점을 중심으로 여러 개의 절을 생성한 후, 이 절을 개별적으로 분석하고자 하였다. 문장을 분할하기 위해서 일단 문장 내부에 존재하고 있는 분할이 가능한 지점을 선택하고, 선택된 지점을 중심으로 문맥 정보를 표현하는 입력 벡터를 생성하였다. 그리고 Support Vector Machine (SVM)을 이용하여 이러한 후보 지점의 특성을 학습하여 향후 긴 문장이 입력되었을 때 보다 정확하게 분할점을 찾고자 하였다. 본 논문에서는 SVM의 보다 좋은 학습과 분류를 위하여 내부 커널로써 다항 커널 (polynomial kernel)을 사용하였다. 그리고 실험을 통하여 약 0.97의 f-measure 값을 얻을 수 있었다.

  • PDF

Cross Field Searching Model for Field Structured Documents (필드 구조 문서를 위한 교차 필드 검색 모델)

  • 윤보현;왕지현;강현규
    • Proceedings of the Korean Society for Cognitive Science Conference
    • /
    • 2000.06a
    • /
    • pp.224-230
    • /
    • 2000
  • 기존의 전문 검색 시스템은 문서를 단지 단어의 연속이라는 제한적 관점에서만 바라보았다. 또한 기존의 필드 검색 시스템은 고정된 필드를 색인 및 검색대상으로 하거나, 문서의 내용이 아닌 메타 정보에 관한 검색만이 가능하였다. 본 논문에서는 내용과 필드 구조를 통합하여 가변 필드 구조 문서를 색인 및 검색하는 모델인 교차 필드 검색 모델을 제안한다. 기존 정보검색 시스템의 기능을 기본으로 제공하면서 필드구조를 색인/검색하기 위한 기능적 요구사항을 제시하고, 내용 및 필드 구조를 색인하면서 동적인 삽입/삭제가 가능한 색인 구조를 제안한다. 아울러 검색시에 문서 가중치를 계산하여 문서를 순위조정하는 분리언 모델, 확장 불리언 모델, 벡터 공간 모델의 변형 모델을 제시한다. 아울러 구현 사례로 STEER-XDS 검색 시스템에 대해 알아본다.

  • PDF