텍스트 마이닝은 비정형화된 텍스트를 분석하여 그 안에 내재된 패턴, 추세, 분포 등의 고급정보들을 추출하는 분야이다. 텍스트 마이닝은 기본적으로 비정형 데이터를 가정하므로 텍스트를 단순화된 모델로 표현하는 것이 필요하다. 현재까지 가장 많이 사용되고 있는 모델은 텍스트를 단순한 단어들의 집합으로 표현한 벡터공간 모델이다. 그러나 최근 들어 단어들의 의미적 관계까지 표현하기 위해 그래프를 이용한 텍스트 표현 모델을 많이 사용하고 있다. 본 논문에서는 텍스트 마이닝을 위한 기존의 연구 중에서 그래프에 기반한 텍스트 표현 모델의 방법들과 그들의 특징들을 기술한다. 또한 그래프 기반 텍스트 마이닝의 향후 발전방향에 대해서도 논한다.
본 논문에서는 온라인 학습을 이용한 한국어 의존구문분석 방법을 제안한다. CoNLL-X에서 1위를 차지한 그래프 기반 의존구문분석 방법을 한국어에 맞게 변형하고, 한국어의 교착어적 특성을 고려해 한국어에 적합한 자질 집합을 제시하였다. 특히 의존트리의 에지(edge)를 단어와 단어간의 의존관계가 아닌 부분트리(partial tree)와 부분트리의 의존관계로 바라보기 위해 부분트리가 공유하고 있는 기능어 정보를 추가 자질로 사용하였다. 또한 한국어의 지배소 후위(head-final) 언어 특성과 투사성(projectivity)을 이용하여 Eisner(1996) 알고리즘을 사용하지 않고도 O($n^3$)의 CYK알고리즘을 사용할 수 있었고, 이를 이용해 최적의 전역해(global optimum)를 찾을 수 있었다. 각 자질을 위한 최적의 가중치 벡터는 온라인 학습방법 중 하나인 Collins(2002)의 averaged perceptron 알고리즘을 사용함으로써 빠르게 모델을 학습할 수 있었다. 제안 모델을 국어정보베이스(KIBS) 말뭉치에 적용한 결과 어절 단위 정확률 88.42%의 높은 성능을 얻을 수 있었다.
음성인식에 있어서 문제점의 하나는 발성자에 따른 주파수 변동문제이다. 본 논문에서는 이러한 음성 신호의 주파수 특성의 변동에 따른 영향을 해결하기 위하여 fuzzy 이론을 도입하였다. 여기서 표준패턴은 음성신호의 대표적인 특징들을 포함하고 있어야 하므로, 먼저 여러 화자가 발성한 단어들을 벡터 양자화한 코드북을 생성하였으며, 이코드북으로 부터 추출한 피크 주파수와 피크 에너지를 fuzzy화 패턴으로 작성하였다. 입력 음성신호로 부터 추출한 특징량인 스펙트럼의 피크 주파수와 피크에너지를 각각 멤버쉽 함수로 표현하여 fuzzy 추론에 의한 단어인식을 하였다. 실제 확신도 계산에 있어서는 계산량을 줄이기 위하여 fuzzy 값의 차만으로 확신도를 구하는 개선 확신도를 제안하여 사용하였다. 한국어 숫자음을 인식 실험한 결과 주파수 특성의 변동에 따른 영향을 해결할 수 있음을 확인하였으며, 제안된 개선 확신도 계산방법에 의해서 기억용량과 계산량을 감소 시킬 수 있었다.
최근 들어 많은 사람들이 자신의 관심사를 SNS에 게시하거나 인터넷과 컴퓨터의 기술 발달로 디지털 형태의 문서 저장이 가능하게 됨으로써 생성되는 텍스트 자료의 양이 폭발적으로 증가하게 되었다. 이에 따라 수많은 문서 자료로부터 가치 있는 정보를 창출하기 위한 기술의 요구 또한 증가하고 있다. 본 연구에서는 대통령 연설 기록문과 신문기사 공공데이터를 활용하여 한글 단어들이 시간에 따라 어떻게 의미가 변화되어 가는지를 통계적 기법을 통해 발굴하였다. 이를 이용하여 한글의 통시적 변화 연구에 활용할 수 있는 방안을 제시한다. 기존 언어학자나 원어민의 직관에 의해 연구되던 한글의 이론적 언어 현상 연구에서 벗어나 누구나 사용할 수 있는 공공문서를 통해 수치화된 값을 도출하고 단어의 의미변화 현상을 설명하고자 한다.
음성인식에서 TMHMM(Tied Mixture Hidden Markov Model)은 자유 매개변수의 수를 감소시키기 위한 좋은 접근이지만, GPDF(Gaussian Probability Density Function) 군집화 오류에 의해 음성인식의 오류를 발생시켰다. 본 논문은 TMHMM에서 발생하는 군집화 오류를 최소화하기 위하여 HCNN(Homogeneous Centroid Neural Network) 군집화 알고리즘을 제안한다. 제안된 알고리즘은 CNN(Centroid Neural Network)을 TMHMM상의 음향 특징벡터에 활용하였으며, 다른 상태에 소속된 확률밀도가 서로 겹쳐진 형태의 이질군집 지역에 더 많은 코드벡터를 할당하기 위해서 본 논문에서 새로 제안이 제안되는 이질성 거리척도를 사용 하였다. 제안된 알고리즘을 한국어 고립 숫자단어의 인식문제에 적용한 결과, 기존 K-means 알고리즘이나 CNN보다 각각 14.63%, 9,39%의 오인식률의 감소를 얻을 수 있었다.
감정요소를 사용한 정보검색시스템은 감정에 기반한 정보검색을 수행하기 위하여 감정시소러스를 구성하였으며 이를 사용한 감정요소추출기를 구현하였다. 감정요소추출기는 기본 5가지 감정 요소를 해당 문서에서 추출하여 문서를 벡터화시킨다. 벡터화시킨 문서들은 k-nearest neighbor, 단순 베이지안 및 상관계수기법을 사용한 2단계 투표방식을 통해 학습하고 분류하였다. 실험결과 분류 방식과 K-means를 이용한 클러스터링에서 감정요소에 기반한 방식이 더 우수하다는 결과와 5,000 단어 미만의 문서 검색에 감정기반 검색이 유리하다는 것을 보였다.
기존 의미커널을 적용한 주관식 채점 시스템은 여러 답안과 말뭉치에서 추출한 색인어들과의 상관관계를 벡터방식으로 표현하여 자연어 처리에 대한 문제를 해결하려 하였다. 본 논문에서는 기존 시스템의 답안 및 색인어의 표현 한계로 인한 유사도 계산오차 가능성에 대한 문제를 해결하고자 시소러스를 이용한 임의 추출 방식의 답안 확장을 적용하였다. 서술형 주관식 평가에서는 문장의 문맥보다는 사용된 어휘에 채점가중치가 높다는 점을 착안, 출제자와 수험자 모두의 답안을 동의어, 유의어 그룹으로 확장하여 채점 성능을 향상시키려 하였다. 우선 두 답안을 형태소 분석기를 이용해 색인어를 추출한 후 워드넷을 이용하여 동의어, 유의어 그룹으로 확장한다. 이들을 말뭉치 색인을 이용하여 단어들 간 상관관계를 측정하기 위한 벡터로 구성하고 의미 커널을 적용하여 정답 유사도를 계산하였다. 출제자의 채점결과와 각 모델의 채점 점수의 상관계수 계산 결과 ELSA 모델이 가장 높은 유사도를 나타내었다..
본 연구에서는 어휘정보와 개념정보를 기반으로 스팸메일 필터링 시스템을 구축하였다. 스팸메일을 판별할 수 있는 정보를 두 가지로 구분하였는데, 확실한 정보군은 송신자 정보, URL, 그리고 최근 스팸 키워드 리스트이며, 덜 확실한 정보군은 메일 본문에서 추출한 단어목록과 개념코드이다. 먼저 확실한 정보군을 이용하여 스팸메일을 분류하고 그다음 덜 확실한 정보군을 이용하였다. 메일 본문에 포함된 어휘정보와 개념코드는 SVM 기계학습을 한 후 사용된다. 본 연구의 결과, 더 많은 어휘정보를 특징벡터로 사용하였을 때 스팸 정확률이 상승하였으며 추가로 개념코드를 특징벡터에 포함시켰을 때 스팸 재현율이 상승하였다.
본 논문에서는 역전파 신경망 알고리즘(BPNN: Back Propagation Neural Network)과 Singular Value Decomposition(SVD)를 이용하는 한글 문서 분류 시스템을 제안한다. BPNN은 학습을 통하여 만들어진 네트워크를 이용하여 문서분류를 수행한다. 이 방법의 어려움은 분류기에 입력되는 특징 공간이 너무 크다는 것이다. SVD를 이용하면 고차원의 벡터를 저차원으로 줄일 수 있고, 또한 의미있는 벡터 공간을 만들어 단어 사이의 중요한 관계성을 구축할 수 있다. 본 논문에서 제안한 BPNN의 성능 평가를 위하여 한국일보-2000/한국일보-40075 문서범주화 실험문서집합의 데이터 셋을 이용하였다. 실험결과를 통하여 BPNN과 SVD를 사용한 시스템이 한글 문서 분류에 탁월한 성능을 가지는 것을 보여준다.
뉴스 클러스터링에서 두 문서 간의 유사도는 클러스터의 특성을 결정하는 중요한 부분 중 하나이다. 전통적인 단어 기반 접근 방법인 TF-IDF 벡터 유사도는 문서 간의 의미적인 유사도를 반영하지 못하고, 기존 딥러닝 기반 접근 방법인 시퀀스 유사도 측정 모델은 문서 단위에서 나타나는 긴 문맥을 반영하지 못하는 문제점을 가지고 있다. 이 논문에서 우리는 뉴스 클러스터링에 적합한 문서 쌍 유사도 모델을 구성하기 위하여 문서 쌍에서 생성되는 다수의 문장 표현들 간의 유사도 정보를 종합하여 전체 문서 쌍의 유사도를 측정하는 네 가지 유사도 모델을 제안하였다. 이 접근 방법들은 하나의 벡터로 전체 문서 표현을 압축하는 HAN (hierarchical attention network)와 같은 접근 방법에 비해 두 문서에서 나타나는 문장들 간의 직접적인 유사도를 통해서 전체 문서 쌍의 유사도를 추정한다. 그리고 기존 접근 방법들인 SVM과 HAN과 제안하는 네 가지 유사도 모델을 통해서 두 문서 쌍 간의 유사도 측정 실험을 하였고, 두 가지 접근 방법에서 기존 접근 방법들보다 높은 성능이 나타나는 것을 확인할 수 있었고, 그래프 기반 접근 방법과 유사한 성능을 보이지만 더 효율적으로 문서 유사도를 측정하는 것을 확인하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.