• Title/Summary/Keyword: 단속절삭

Search Result 19, Processing Time 0.026 seconds

Regression Equation Deduction for Cutting Force Prediction during Interrupted Cutting of Carbon Steel for Machine Structure (SM45C) (기계구조용 탄소강(SM45C)의 단속절삭 시 절삭력예측을 위한 회귀방정식 도출)

  • Bae, Myung-Il;Rhie, Yi-Seon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.15 no.4
    • /
    • pp.40-45
    • /
    • 2016
  • Interrupted cutting has different cutting characteristics compared with continuous cutting. In interrupted cutting, the workpiece has a groove that regularly impacts the cutting tool and workpiece. Therefore, tool damage occurs rapidly, and this increases the cutting force and surface roughness. In this study, we performed interrupted cutting of carbon steel for machine structure (SM45C) using a coated carbide tool (TT7100). To predict the cutting force, we analyzed the experimental results with a regression analysis. The results were as follows: We confirmed that the factors affecting the principal force and radial force were cutting speed, depth of cut, and feed rate. From the multi-regression analysis, we deduced regression equations, and their coefficients of determination were 89.6, 89.27, and 28.27 for the principal, radial, and feed forces, respectively. This means that the regression equations were significant for the principal and radial forces but not for the feed force.

Research on the Intermittent Hard Turning (I) : Machinability and Characteristic of CBN Tools (단속 하드터님에 관한 연구 (I) : 절삭성과 CBN공구의 마모특성)

  • Jeon, Jun-Yong;Ko, Tae-Jo;Kim, Hee-Sool
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.7
    • /
    • pp.58-65
    • /
    • 1999
  • Hard turning offers many possible benefits over grinding such as lower equipment costs, shorter setup time, reduced process steps and better surface integrity. Despite the amount of research in this area, there exists no data in the intermittent hard turning. The objective of this paper is to investigate the effect of CBN tool materials and machinability to an intermittent hard turning. To this end, different CBN materials were tested to evaluate the tool wear and surface roughness in an intermittent hard turning. It is found that low-CBN-content tool is better than high-CBN-content tool. Then, we discussed a cutting force, vibration, and CBN tool wear mechanism from the hard turning.

  • PDF

Effect of WC and group IV Elements of Ti(C,N) on the Intermittent Cutting Performance (Ti(C,N)계 서메트 공구의 WC와 IV족 원소 첨가가 단속 절삭성능에 미치는 영향)

  • 박준석;김경재;권원태;강신후
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.919-922
    • /
    • 1997
  • In this study, the amount of WC and group N elements of Ti(C, N) cermet tool was investigated. The composition of WC was changed from 5 to 20% to determine the effect of WC on the cutting performance of cermet tool. The more WC was added, the longer the tool life of the cermet tool was. The cermet with 20% WC showed the best fracture toughness. The effect of group N elements ; ZrC, ZrN and HfC was also investigated by adding each of them to manufacture the cermet tool with fixed 14% WC composition. The cermet with 1% group N ZrC and 14% WC showed the best cutting performance among the investigated cermet tools.

  • PDF

Wear of Partially Coated Tool in Interrupted Cutting (부분 피복된 HSS 공구의 단속절삭시의 마멸)

  • 김동욱;조용주;지용권;류병진
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1994.10a
    • /
    • pp.67-72
    • /
    • 1994
  • Tool test was conducted to investigate the were process of only flank face TiN coated HSS tool in interrupted cutting for variuos cutting speeds and feed rates. Flank wear was caused by microchipping at the cutting edge. At high cutting speed, the which was formed as a result of diffusion and abrasion lowered cutting edge and influenced flank were. Flank wear due to chipping was little influenced by cutting speed.

  • PDF

A study of ultra-precision interrupt machining for an polygon mirror (초정밀 단속 절삭을 이용한 다각형 미러의 절삭특성에 관한 연구)

  • Park, Soon-Sub;Lee, Ki-Young;Kim, Hyoung-Mo;Lee, Jae-Seol
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.6 no.3
    • /
    • pp.65-70
    • /
    • 2007
  • Generally, the core component of small precise optical device demands high accuracy of manufacturing processes. Although, the geometry of it is simple, the manufacturing technique to materialize is categorized as the ultra-precision machining and it must be done with the specialized machines and by the trained operator. Typical examples of small precise optical device are laser printer and phone camera. As a core part of laser printer, polygon mirror is used in laser scanning unit(LSU). It couldn't be fabricated with conventional machine but specified machine for polygon mirror machining. In this study, Polygon mirror with 16 surfaces was manufactured in the process of ultra-precision fly-cutting with Al material and investigated optimum machining conditions in terms of feedrate, pitch per cycle and depth of cut. Owing to process of polishing has bad influence on reflection angle, surface roughness, $R_{max}$=10nm, and form error, $Ra={\lambda}/10({\lambda}=632nm)$, are prerequisites for polygon mirror.

  • PDF

Chatacteristics of Deep Hole Machining for Duralumin Using Periodical Change of Feedrate (이송속도의 주기적 변화를 이용한 듀랄루민재의 심공가공 특성)

  • 김용제
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.04a
    • /
    • pp.240-245
    • /
    • 2000
  • This paper presents the experimental study of drilling for duralumin A2024 with intermittently decelerated feed rate. It is achieved through a programmed periodic increase and decrease in the feed rate using a machining center. The following experimental result were performed with the objective of solving chip to disposal problems. In conventional drilling of aluminum, long continuous chips are produced that wind around the drill causing difficulties in eliminating chips from the cutting zone. In order to acquire the basic data necessary to regulate the chip profile, the relationship between cutting variables and chip shape was investigated. The following conclusions are established from the experimental results. At a suitable feed fluctuation ratio, intermittently decelerated feed drilling proved successful in breaking chips to appropriate lengths while maintaining stable cutting. Thus, it is an effective method for improving chip disposal. The amplitude of the dynamic component of cutting force in intermittent feed frilling is influenced by the feed fluctuation ratio.

  • PDF

A Study on Ultra-precision Fly-cutting of Aluminum Alloy (알루미늄 합금의 초정밀 플라이커팅에 관한 연구)

  • Park Soon-Sub;Lee Ki-Yong;Kim Hyoung-Mo;Hwang Yeon
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.233-234
    • /
    • 2006
  • For the machining of freeform surface, fly cutting is one of the key technology to meet profile accuracy and surface roughness simultaneously. Fly cutting can be applied to manufacturing of optical components with complex profile. In this study aluminum alloy was machined in the process of ultra precision fly cutting and investigated optimum machining conditions in terms of feed-rate, pitch per cycle and depth of cut.

  • PDF

Surface Roughness Prediction of Interrupted Cutting in SM45C Using Coated Tool (초경피복공구를 이용한 기계구조용 탄소강의 단속절삭시 표면거칠기 예측)

  • Bae, Myung-Il;Rhie, Yi-Seon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.13 no.3
    • /
    • pp.77-82
    • /
    • 2014
  • In this study, we carried out the interrupted cutting of carbon steel for a machine structure (SM45C) with a CVD-coated tool and conducted an ANOVA test and a confidence interval analysis to find factors influence the surface roughness and to obtain a regression equation. We found that factor which mostly affects the surface roughness during interrupted cutting was the feed rate. The cutting speed and depth of the cut only had small effect on the surface roughness. From the result of a multi-regression analysis during an interrupted cutting experiment, we obtained regression equation. Its coefficient of determination was 0.918, indicating that the regression equation was predictable. Compared to continuous cutting, if the feed rate increases, the surface roughness will also increase during interrupted cutting.

Machinability of CBN Tools in Interrupted Milling Process of Die & Mold Steels with High Hardness (고경도 금형강 단속 밀링절삭에 대한 CBN 공구의 가공 성능)

  • Song, Jun-Hee;Mun, Sang-Don
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.7
    • /
    • pp.651-659
    • /
    • 2010
  • When high-speed interrupted cutting is carried out for die and mold steels with high hardness, CBN tools manifested a significantly longer wear life than carbide, ceramic, or cermet tools in an experiment of face milling characteristics. In addition, it was also found that they secured a stable surface roughness within a range of 1.6 S~6.3 S, an acceptable range for precision machining for polished machining parts. And it makes them acceptable in the precision machining field, except in industries where very high machining accuracy is required. In the high hardness interrupted cutting, it was advantageous to perform a negaland treatment and a honning treatment on the tools' cutting edge to extend tool life and surface roughness. Also, severe crater development was found on the sloped face in CBN tools following high-speed machining. This caused the cutting edge to be weakened and damaged, and ultimately resulted in a shorter tool life. Finally, as a result of EDX mapping inspection, Cr component was detected evenly on the entire crater wear area, which can be included only in STD 11.