• 제목/요약/키워드: 단선터널

Search Result 24, Processing Time 0.019 seconds

Study of the Air-tightness Requirement Decisions of GTX Trains (GTX 차량기밀도 요구성능 도출에 관한 연구)

  • Yun, Su-hwan;Cho, Yong-hyeon;Hong, Seok-woo
    • Journal of the Korean Society for Railway
    • /
    • v.18 no.6
    • /
    • pp.513-521
    • /
    • 2015
  • When a GTX travels through a deep-level underground tunnel at a speed of 180km/h, ear-discomfort in passengers due to the pressure wave generated could be an issue due to the small cross-sectional area. Therefore, appropriate pressure-tightness values for GTX trains must be secured as a countermeasure. In this paper, a 1D numerical analysis was conducted to determine the pressure-tightness coefficient which allows a pressure change meet the criteria. The pressure transients in a tunnel and in a passenger car are predicted considering an A-line underground tunnel with a length of 37km and its operation schedule. The required pressure-tightness of the car is predicted to be three seconds and 6 seconds respectively for a single track and a double- track tunnel to prevent aural discomfort in passengers. The result of this study are expected to serve as useful information to those involved in the development of various solutions to improve air-tightness of GTX passenger cars.

Fracture of Multiple Flaws in Uniaxial Compression (일축압축 상태하 다중 불연속면의 파괴에 대한 연구)

  • 사공명;안토니오보베
    • Tunnel and Underground Space
    • /
    • v.11 no.4
    • /
    • pp.301-310
    • /
    • 2001
  • Gypsum blocks with sixteen flaws have been prepared and tested in uniaxial compression. Results from these experiments are compared with observations from the same material with two and three flaws. The results indicate that the cracking pattern observed in specimens wish multiple flaws is analogous to the pattern obtained in specimens with two and three flaws such as initiation and propagation of wing, and secondary cracks and coalescence. Wing cracks initiate at an angle with the flaw and propagate in a stable manner towards the direction of maximum compression. Secondary cracks initiate and propagate in a stable manner. As the load is increased, secondary cracks may propagate in an unstable manner and produce coalescence. Two types of secondary cracks are observed: quasi-coplanar, and oblique secondary cracks. Coalescence is produced by the linkage of two flaws: wing and/or secondary cracks. From the sixteen flaws test, four types of coalescence are observed. Observed types of coalescence and initiation stress of wing and secondary crackle depend on flaw geometries, such as spacing, continuity, flaw inclination angle, ligament angle, and steppings.

  • PDF

Effect of Learning Data on the Semantic Segmentation of Railroad Tunnel Using Deep Learning (딥러닝을 활용한 철도 터널 객체 분할에 학습 데이터가 미치는 영향)

  • Ryu, Young-Moo;Kim, Byung-Kyu;Park, Jeongjun
    • Journal of the Korean Geotechnical Society
    • /
    • v.37 no.11
    • /
    • pp.107-118
    • /
    • 2021
  • Scan-to-BIM can be precisely mod eled by measuring structures with Light Detection And Ranging (LiDAR) and build ing a 3D BIM (Building Information Modeling) model based on it, but has a limitation in that it consumes a lot of manpower, time, and cost. To overcome these limitations, studies are being conducted to perform semantic segmentation of 3D point cloud data applying deep learning algorithms, but studies on how segmentation result changes depending on learning data are insufficient. In this study, a parametric study was conducted to determine how the size and track type of railroad tunnels constituting learning data affect the semantic segmentation of railroad tunnels through deep learning. As a result of the parametric study, the similar size of the tunnels used for learning and testing, the higher segmentation accuracy, and the better results when learning through a double-track tunnel than a single-line tunnel. In addition, when the training data is composed of two or more tunnels, overall accuracy (OA) and mean intersection over union (MIoU) increased by 10% to 50%, it has been confirmed that various configurations of learning data can contribute to efficient learning.

A Study on the Wireless Communication Method for Emergency Broadcasting System in Metro Environments (도시철도용 비상방송시스템을 위한 무선통신방식 연구)

  • Jang, Soo-Hyun;Shin, Dae-Kyo;Yoon, Sang-Hun;Jung, Han-Gyun;Jin, Seong-Keun;Lim, Ki-Taeg
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.17 no.6
    • /
    • pp.202-210
    • /
    • 2018
  • Recently, the subway running in metro environments has a problem in securing the safety of passengers due to the failure of announcement in emergency situations such as breakdown, train accidents and power outage in the underground tunnels. Thus, there is a need to develop an emergency broadcasting system that can provide the announcement to all passenger cars in any emergency situations on the railway route. In this paper, the applicability of various wireless communication technologies for the emergency broadcasting system through the measurement campaign was examined in Seoul metropolitan subway. A WAVE(Wireless Access in Vehicular Environments) is communication technology that can use 5.9GHz dedicated frequency band without charge and it is possible to directly communicate between terminals over 200m without the help of additional relay. Especially, it confirms robust communication performance in the various metro environments, and therefore, it is considered to be suitable as a communication method of a radio-connected emergency broadcasting system for urban subway.