• Title/Summary/Keyword: 단부요소

Search Result 102, Processing Time 0.024 seconds

Interface Behavior of Concrete Infilled Steel Tube Subjected to Flexure (휨을 받는 콘크리트 충전 강관의 계면거동)

  • Lee, Ta;Jeong, Jong-Hyun;Kim, Hyeng-Ju;Lee, Yong-Hak
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.1
    • /
    • pp.9-17
    • /
    • 2015
  • Interface behavior of concrete-infilled steel tube (CFT) was investigated based on the experimental observations and numerical analyses. Laboratory tests were performed for twelve CFTs that consisted of two different cases of diameters where each diameter case was composed of three different cases of shear span length. Thereby, diameter and shear span parameters were considered to prove the question of whether there exists interface slip between steel tube and infilled-concrete. Confining effect of steel tube to infilled concrete was also investigated by measuring lateral strain as well as longitudinal strain. Based on the study, it was concluded that confining effect of steel tube to infilled-concrete is not influential under flexural loading and therefore, the sectional analysis is an effective way to estimate the flexural strength of CFT.

Rotational Stiffness Reduction Factors of End-plate Connection for PEB Using Finite Element Analysis (유한요소해석을 이용한 공업화박판강구조 단부판 접합부의 회전강성감소계수)

  • Lee, Jun-Seop;Shin, Kyung-Jae;Lee, Swoo-Heon;Lee, Hee-Du;Kim, Cheol-Hwan
    • Journal of Korean Society of Steel Construction
    • /
    • v.29 no.4
    • /
    • pp.323-330
    • /
    • 2017
  • The pre-engineered building(PEB) construction has been gradually applied to single story buildings as a practical and efficient alternative to conventional buildings. However, there has been a few structure collapse due to suddenly excessive load. Although a structure design requires accurate and professional skills, the PEB system tends to be designed simply because of complexation of structural analysis for connections. This paper shows the finite element analysis(FEA) using ABAQUS software on bolted connection which was previously tested. The FEA condignly simulated the behavior of bolted connection in PEB system and was in close agreement with experimental results. Then the stiffness reduction factor of the bolted joints that can be used in the actual design is presented through the analysis of the joint parameters.

An Experimental Study on Shear Strength of Set Anchors Installed in Plain Concrete (무근콘크리트에 매입된 셋트앵커의 전단내력평가에 관한 실험적 연구)

  • Seo, Seong Yeon;Yang, Young Sung;Kim, Kyu Suk
    • Journal of Korean Society of Steel Construction
    • /
    • v.17 no.3 s.76
    • /
    • pp.271-283
    • /
    • 2005
  • This paper concerns the prediction of shear capacity, as governed by steel failure and concrete breakout failure, of set anchors installed in plain concrete. For this purpose, the methods to evaluate the shear capacity of the set anchors in concrete are summarized and the experimental data are compared with capacities by the two present methods : the method of ACI349-90 and the Concrete Capacity Design (CCD) method. (1) The constant-0.684 in the steel strength equation of set anchor was determined from shear test data at the 5 percent fractile probability. Consequently, it was concluded that the constant-0.6 and 0.5 in the steel strength equation for steel failure of ACI318-02 and EOTA were safe. The nominal shear strength of set anchor was proposed as following. $V_s=0.684 A_{se}f_{ut}$. (2) The CCD method was considered reasonable in estimating the concrete breakout strength of set anchors. In terms of the CCD method, the nominal concrete breakout strength of set anchor in shear was provided as follows; $V_b=0.609(\frac{\iota}{d_o})^{0.2}\sqrt{d_0}\sqrt{f_c}(c_1)^{1.5}$(N). (3) The CCD method was considered reasonable in estimating the concrete breakout strength for spacing of set anchors. The proposed equation was considered safe in estimating the concrete breakout strength for spacing of set anchors.

Nonlinear Finite Element Analysis Model for Ultimate Capacity Estimation of End-Plate Connection (단부평판 접합부의 극한저항능력 평가를 위한 비선형 유한요소해석 모델)

  • 최창근;정기택
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1992.10a
    • /
    • pp.23-28
    • /
    • 1992
  • The ultimate capacity of end-plate connection is investigated through nonlinear finite element analysis. The example models are divided into stiffened case and unstiffened one. The refined finite element models are analyzed by utilizing a general purpose structural analysis computer program ADINA and the moment-rotation relationships of the connection are determined. The results are compared with the regression equation deduced by Krishnamurthy. It is planned to deduce a bilinear regression equation through a parametric study on various dimensions of the connection.

  • PDF

Study on the Ultimate Strength of Gusset Plate-Circular Hollow Section(CHS) Joint Stiffened with Rib-plate by End Restraint (단부 구속을 받는 리브 보강 플레이트 원형강관 X형 접합부의 극한내력 도출에 관한 연구)

  • Kim, Woo-Bum;Park, Hyun-Ho
    • Journal of Korean Society of Steel Construction
    • /
    • v.24 no.4
    • /
    • pp.383-398
    • /
    • 2012
  • A finite element analysis study was performed to investigate the behavior and strength of a Plate-Circular Hollow Section joint stiffened with Rib-plate, Since The strength of plate-Circular Section joint is reduced by joint of stress and local plastic deformation which is caused by wall moment, rib plates are attached to the upper and lower Plate-Circular Hollow Section joint for redistribution of stress. The behaviors of joints stiffened with Rib-plate according to shape of rib and reinforcing method, etc are different from those of joints which is not stiffened. However, the criterion of hollow structural section was limited on some parts. Therefore, this study intends to investigate the behavior and structural capacity of Plate-Circular Hollow Section joints stiffened with Rib-plate and compare the Finite element analysis with the Design Equation. Finally, this study proposes the reasonable ultimate strength formula through the comparisons with other design guide.

Examination of Lateral Torsional Bucling Strength by Increasing the Warping Strength of I-Section Plate Girder with Concrete Filled Half Pipe Stiffener (콘크리트 충전 반원기둥보강재가 적용된 플레이트 거더의 뒤틀림 강도)

  • Cheon, Jinuk;Lee, Senghoo;Baek, Seungcheol;Kim, Sunhee
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.43 no.5
    • /
    • pp.577-585
    • /
    • 2023
  • Lateral torsional buckling causessafety accidentssuch as collapse accidents during erection. Therefore, anaccurate safety designshould be conducted. Lateral torsional buckling canbe prevented by reinforcing the end orreducing the unbraced length. The method ofreducing the unbraced length by installing a crossframe has high material and installation costs and low maintenance performance.In addition, structuralsafety may be deteriorated due to cracks. The end reinforcement method using Concrete Filled Half Pipe Stiffeneris a method ofreinforcing the end of a plate girder using a stiffenerin the form of a semi-circular column. This method increasesthewarping strength ofthe girder and increasesthe lateral torsional buckling strength.In thisstudy, the effect ofincreasing the warping strengthof plate girders with concrete filled half pipe stiffeners was confirmed. To verify the effect, the results ofthe designequationand the finite element analysis were compared and verified through a experiment. As a result, the plate girderwithCFHPS increased thewarping strengthand confirmed that the lateral torsional buckling strength was increased.

A Study on the Design Parameters of the Static Ring in the Ultra-high Voltage Non-uniform Electric Field (초고압 불평등 전계에서 정전링 설계변수에 대한 연구)

  • Kim, Jin-Sung;Seo, Min-Seong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.7
    • /
    • pp.577-582
    • /
    • 2020
  • Electricity produced at power plants is distributed to consumers through several stages of substations. At this time, an ultra-high voltage transformer is needed in the initial transmission stage to transmit a voltage suitable for each consumer. A high voltage, non-uniform electric field is formed at the end of the winding of the ultra-high voltage transformer, which carries a risk of dielectric breakdown. The winding of the ultra-high voltage transformer is an electrode, which is the key to converting the magnitude of the voltage. A non-uniform electric field is formed along the shape of the winding end, resulting in high electrical stress. The static ring installed at the upper and lower ends of the winding is used to disperse the stress at the winding end. Several variables should be considered when designing a static ring. Among them, this study examined how the curvature of the static ring, the thickness of the insulating paper, the number of barriers, and barrier thickness affect the electrical stress of the static ring using the Finite Element Method. Suggestions to be considered when designing the static ring are proposed through the FEM results.

An Investigation of Deformation Behavior of Plate Ends in Edge Rolling (후판 에지압연시 선후단부의 변형거동)

  • 천명식;황상무;이준정;김종근
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.7
    • /
    • pp.1278-1284
    • /
    • 1992
  • In plate rolling, it is desired to reduce the trimming loss by controlling the formation of defective end shapes. For this reason, edge rolling is frequently performed in the plate mill. In this paper, the effect of various process variables on the deformation of plate ends in edge rolling is examined by conducting experiments and finite element computer simulation. A focus is given to investigating the effect of edging on the width of the deformed plate trimming-free plate rolling.

Design Evaluation of Expandable Implants by the Finite Element Method (유한요소법에 의한 근단부 팽창형 임프란트 모델의 설계평가)

  • Park, Sang-Seok;Chae, Soo-Won;Kwon, Jong-Jin
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.406-411
    • /
    • 2001
  • The expandable implant employs an inner expansion screw in order to expand several legs of implant. Compressive stresses are produced at the bone tissue surrounding the implant, and the contact area between the implant and the bone tissue is increased, which result in increased resistance to horizontal and vertical pressure loads. The stress distribution in implant is also an important factor. Three types of implant models including an existing one have been investigated by using the Finite Element Method, and an improved design model has been suggested.

  • PDF

Stiffness and Strength of Composite Beams in Steel Building Structures Under Lateral Loading (횡하중을 받는 철골구조물에서 합성보의 강성과 강도)

  • 이승준
    • Computational Structural Engineering
    • /
    • v.2 no.4
    • /
    • pp.79-88
    • /
    • 1989
  • The behavior of composite beams in steel building structures subjected to lateral loading is studied. Mathematical models for the stiffness of composite beams and the strength at the connections, which are dependent on details of the connections are developed based on the previous experimental results and the results from numerical analyses. Analytical models for the skeleton and hysteresis curves of cantilever composite beams are also presented. A single component model for the composite beam, consisting of elastic beam and the end springs at which all the inelstic deformations within a member are lumped, is implemented into the computer program, DRAIN-2D. And a comparison of analytical results is made with the experimental results.

  • PDF