• Title/Summary/Keyword: 단백질 상호작용 네트워크

Search Result 63, Processing Time 0.028 seconds

Identifying Bridging Nodes and Their Essentiality in the Protein-Protein Interaction Networks (단백질 상호작용 네트워크에서 연결노드 추출과 그 중요도 측정)

  • Ahn, Myoung-Sang;Ko, Jeong-Hwan;Yoo, Jae-Soo;Cho, Wan-Sup
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.12 no.5
    • /
    • pp.1-13
    • /
    • 2007
  • In this research, we found out that bridging nodes have great effect on the robustness of protein-protein interaction networks. Until now, many researchers have focused on node's degree as node's essentiality. Hub nodes in the scale-free network are very essential in the network robustness. Some researchers have tried to relate node's essentiality with node's betweenness centrality. These approaches with betweenness centrality are reasonable but there is a positive relation between node's degree and betweenness centrality value. So, there are no differences between two approaches. We first define a bridging node as the node with low connectivity and high betweenness value, we then verify that such a bridging node is a primary factor in the network robustness. For a biological network database from Internet, we demonstrate that the removal of bridging nodes defragment an entire network severally and the importance of the bridging nodes in the network robustness.

  • PDF

Data Modeling for Cell-Signaling Pathway Database (세포 신호전달 경로 데이타베이스를 위한 데이타 모델링)

  • 박지숙;백은옥;이공주;이상혁;이승록;양갑석
    • Journal of KIISE:Databases
    • /
    • v.30 no.6
    • /
    • pp.573-584
    • /
    • 2003
  • Recent massive data generation by genomics and proteomics requires bioinformatic tools to extract the biological meaning from the massive results. Here we introduce ROSPath, a database system to deal with information on reactive oxygen species (ROS)-mediated cell signaling pathways. It provides a structured repository for handling pathway related data and tools for querying, displaying, and analyzing pathways. ROSPath data model provides the extensibility for representing incomplete knowledge and the accessibility for linking the existing biochemical databases via the Internet. For flexibility and efficient retrieval, hierarchically structured data model is defined by using the object-oriented model. There are two major data types in ROSPath data model: ‘bio entity’ and ‘interaction’. Bio entity represents a single biochemical entity: a protein or protein state involved in ROS cell-signaling pathways. Interaction, characterized by a list of inputs and outputs, describes various types of relationship among bio entities. Typical interactions are protein state transitions, chemical reactions, and protein-protein interactions. A complex network can be constructed from ROSPath data model and thus provides a foundation for describing and analyzing various biochemical processes.

A Relational Information Extraction System from Biomedical Literature (생의학 문헌에서의 관계 정보 추출 시스템)

  • Lim, Joon-Ho;Lim, Jase-Soo;Jang, Hyun-Chul;Park, Soo-Jun
    • 한국HCI학회:학술대회논문집
    • /
    • 2007.02a
    • /
    • pp.932-937
    • /
    • 2007
  • 생의학 분야 문헌의 양이 빠르게 증가함에 따라, 생의학 연구자들이 필요로 하는 정보를 얻기가 어렵게 되었다. 이를 해결하기 위해, 인간-컴퓨터 상호작용 분야에서는 생의학 문헌 검색 시스템, 또는 생의학 문헌의 정보 추출 시스템 등에 대한 연구가 진행되고 있다. 본 논문에서는 생의학 문헌으로부터 정보를 자동으로 추출하기 위한 관계정보 추출 시스템에 대해 소개한다. 소개하는 시스템은 크게 요약 수집 모듈, 관계 추출 모듈, 관계 가시화 모듈로 구성되어 있다. 우선, 요약 수집 모듈에서는 특정 주제의 문헌들을 검색 및 수집한다. 그리고, 관계 추출 모듈에서는 수집된 문헌들에 대해서, 단백질/유전자 등의 생물학 개체를 인식하고, 구문분석을 통하여 인식된 개체들 사이의 관계를 추출한다. 마지막으로, 관계 가시화 모듈에서는 추출된 관계를 통합하여 네트워크 형태로 가시화한다. 이 시스템은 생물학 실험 이전의 문헌 기반 타당성 검사, 단백질-단백질 상호작용 또는 특정 질병과 유전자의 조절관계 분석, 또는 대용량 문헌 처리를 통한 패스웨이 데이터베이스 구축 등에 활용될 수 있다.

  • PDF

Drug-Drug interaction predicting deep learning model using CTET protein of drugs (CTET Protein 을 사용한 Drug-Drug interaction 예측 Deep Learning Model)

  • Seo, Jiwon;Ko, Younhee
    • Annual Conference of KIPS
    • /
    • 2022.11a
    • /
    • pp.63-65
    • /
    • 2022
  • DDI(Drug-Drug Interaction)는 병원에서 발생하는 약물이상반응의 30%를 유발하는 부작용이지만, 현실적으로 모든 약물쌍의 DDI 를 기존 in vivo, in vitro 방식으로 예측하는 것은 불가능하다. 그렇기에, 다양한 in silico 방식의 DDI 예측 모델이 연구되고 있다. 본 연구에서는, 단백질 네트워크 상에서 RWR(Random Walk with Restart) 알고리즘을 통해 약물과 직접적으로 상호작용하는 단백질과 간접적으로 상호작용하는 단백질의 정보를 사용하여 DDI 를 예측하는 모델을 개발하였다. 이 모델을 통하여 기존에 발견하지 못한 DDI 를 새롭게 발견하고, 신약 개발 시에도, 신약과 함께 복용 시 문제를 일으킬 수 있는 약물을 예측하여 약물 이상반응을 방지하고자 한다.

Characterization of the Alzheimer's disease-related network based on the dynamic network approach (동적인 개념을 적용한 알츠하이머 질병 네트워크의 특성 분석)

  • Kim, Man-Sun;Kim, Jeong-Rae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.25 no.6
    • /
    • pp.529-535
    • /
    • 2015
  • Biological networks have been handled with the static concept. However, life phenomena in cells occur depending on the cellular state and the external environment, and only a few proteins and their interactions are selectively activated. Therefore, we should adopt the dynamic network concept that the structure of a biological network varies along the flow of time. This concept is effective to analyze the progressive transition of the disease. In this paper, we applied the proposed method to Alzheimer's disease to analyze the structural and functional characteristics of the disease network. Using gene expression data and protein-protein interaction data, we constructed the sub-networks in accordance with the progress of disease (normal, early, middle and late). Based on this, we analyzed structural properties of the network. Furthermore, we found module structures in the network to analyze the functional properties of the sub-networks using the gene ontology analysis (GO). As a result, it was shown that the functional characteristics of the dynamics network is well compatible with the stage of the disease which shows that it can be used to describe important biological events of the disease. Via the proposed approach, it is possible to observe the molecular network change involved in the disease progression which is not generally investigated, and to understand the pathogenesis and progression mechanism of the disease at a molecular level.

Design and Implementation of Protein Pathway Analysis System (단백질 경로 분석 시스템의 설계 및 구현)

  • Lee Jae-Kwon;Kang Tae-Ho;Lee Young-Hoon;Yoo Jae-Soo
    • The Journal of the Korea Contents Association
    • /
    • v.5 no.6
    • /
    • pp.31-40
    • /
    • 2005
  • In the post-genomic era, researches on proteins as well as genes have been increasingly required. Particularly, work on protein-protein interaction and protein network construction have been recently establishing. Most biologists publish their research results through papers or other media. However, biologists do not use the information effectively, because the published research results are very large. As the growth of internet field, it becomes easy to access these research results. It is important to extract information with a biological meaning from various media. Therefore, In this paper, we efficiently extract the protein information from many open papers or other media and construct the database of the extracted information. We build a protein network from the established database and then design and implement various pathway analysis algorithms which find biological meaning from the protein network.

  • PDF

Implementing System for Dynamic Constructing and Clustering on KEGG Pathway Network (KEGG 패스웨이 네트워크 동적 구축 및 클러스터링 시스템 개발)

  • Seo, Dongmin;Lee, Min-Ho;Yu, Seok Jong
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2015.05a
    • /
    • pp.231-232
    • /
    • 2015
  • 최근 유전체학, NGS(Next Generation Sequencing) 기술, IT/NT 장비의 발전 등에 따라 방대한 양의 바이오-메디컬 데이터가 생산되고, 이에 따라 빅데이터를 활용한 헬스케어 산업이 급속히 발달하고 있으며, 이와 관련된 빅데이터 기술은 국민의 건강 증대와 건강한 고령 삶을 제공하는 핵심 기술로 급부상하고 있다. 패스웨이는 단백질, 유전자, 세포 등의 생체적 요소 간의 역학관계 혹은 상호작용 등을 네트워크 형식으로 표현한 생물학적 심층지식으로, 바이오-메디컬 빅데이터 분석에 있어서 널리 활용되고 있다. 하지만 패스웨이는 매우 다양한 형태를 갖고 용량이 매우 큰 빅데이터로 이를 분석하는데 많은 시간이 소요된다. 그래서 본 논문에서는 세계적으로 가장 우수하고 방대한 양의 패스웨이를 제공하는 KEGG 패스웨이 데이터베이스로부터 사용자가 관심 갖는 패스웨이만을 자동 수집하고 패스웨이 간 계층구조를 기반으로 네트워크를 구성 후, 해당 패스웨이 네트워크에 대한 클러스터링과 핵심 패스웨이 선정을 통해 패스웨이 간의 역학관계 또는 상호작용을 직관적으로 분석할 수 시스템을 제안했다.

  • PDF

Application of K-core Algorithm as a Tool for Analyzing Complex Network (복잡계 네트워크 분석도구로써 k-core 알고리즘의 응용)

  • Ryu, Jea-woon;Ku, Jaeul;Park, byeol-na;Cho, seong-jin;Yoo, Jae Soo;Kim, hak-yong
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2010.05a
    • /
    • pp.253-255
    • /
    • 2010
  • 복잡계 과학의 발달에 따라 많은 사회 네트워크들이 분석되고 있다. 우리는 연결선수, 중간성(betweenness), 결집계수와 같은 링크수를 중심으로 네트워크의 구조적 분석에서 나아가 복잡한 네트워크 속에서 핵심 되는 중심 모듈을 찾아 분석하였다. K-core알고리즘은 복잡계 네트워크를 가중치가 낮은 링크와 노드를 단계적으로 제거하여 복잡한 네트워크의 의미를 분석함에 있어 핵심이 되는 모듈을 얻는데 용이하다. 이에 소설, 영화, 과학 교과서, 단백질 상호작용 네트워크와 같은 다양한 분야에 이 알고리즘을 직접 적용해보았다. 그 결과, 각기 복잡한 네트워크로부터 핵심이 되는 모듈을 찾아낼 수 있었고, 전체 네트워크에서는 발견하기 힘든 유용한 정보들을 도출할 수 있음을 확인하였다. 본 연구에서 k-core 알고리즘을 통해 핵심 네트워크를 구축하여 유용한 정보를 도출할 수 있는 가능성을 제시하였다.

  • PDF

Development of Unified Modeling System for Biological Networks (생물학적 네트워크의 통합적 모델링 시스템 개발)

  • Yu, Seok Jong;Park, Junho;Yoo, JaeSoo
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2013.05a
    • /
    • pp.275-276
    • /
    • 2013
  • 생명현상은 다양한 단백질들 간의 상호작용으로 외부의 환경에 대처하고 생명유지를 위한 다양한 생화학반응을 수행한다. 이러한 복잡한 생명현상의 과정을 이해하기 위해서 생명과학자들은 유전자 조절네트워크, 신호전달네트워크, 대사네트워크 등 다양한 종류의 네트워크를 모델링하고 있다. 하지만 각각의 모델링방법은 각 분야별로 다양하게 존재하고 있는 실정이다. 본 연구에서는 이러한 다양한 종류의 생물학적 네트워크를 통합적으로 모델링할 수 있는 통합적 모델링 시스템을 설계하고 구현하였다. 특히 신호전달 과정에 대한 블리온 모델링기법, 유전자 발현조절 및 대사과정에 대한 ODE(Ordinary Differential Equation)모델링 그리고 유전적 표현형을 분석할 수 있는 Flux 모델링을 하나의 모델링 시스템에서 설계 하였다. 또한 이 같은 다양한 종류의 모델링을 지원하기 위해서 SBML포멧을 기준으로 가시적인 모델링 시스템을 구현하였다. 특히 연구자가 모델링한 생물학적 모델이 다른 형태의 모델링기법에도 적용될 수 있도록 전환할 수 있도록 하였다. 이러한 통합적인 모델링 시스템은 향후 복잡해지는 생물학적 네트워크를 손쉽게 모델링 할 수 있는 시스템으로 활용될 것이다.

  • PDF