• Title/Summary/Keyword: 단락 요철

Search Result 9, Processing Time 0.026 seconds

An Investigation of Angled Discrete Rib-Turbulators for Cooling Enhancement of Gas Turbine Blades (가스 터빈 블레이드 냉각 성능 향상을 위한 경사요철의 단락 효과)

  • Wu, Seong-Je;Lee, Sei-Young;Cho, Hyung-Hee
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.782-789
    • /
    • 2001
  • Local heat/mass transfer and friction loss in a square duct roughened with various types of continuous and discrete rib turbulators are investigated. The combined effects of the gap flows of the discrete ribs and the secondary flows are examined for the purpose of the reduction of thermally weak regions and the promotion of the uniformity of heat/mass transfer distributions as well as the augmentation of average heat/mass transfer. The rib-to-rib pitch to the rib height ratio (p/e) of 8 and the rib angles of 90 and 60 deg are selected with $e/D_{h}=0.08$. The vortical structure of the secondary flows induced by the parallel angled arrays are quite distinct from that induced by the cross angled arrays. This distinction influences on heat/mass transfer and friction loss in all the tested cases. The gap flows of the discrete ribs reduce the strength of the secondary flows but promote local turbulence and flow mixing. As a result, the fairly uniform heat/mass transfer distributions are obtained with two row gaps.

  • PDF

Heat/Mass Transfer and Friction Characteristic in a Square Duct with Various Discrete Ribs -In-Lined Gap Arrangement Ribs- (덕트내 요철의 단락위치 변화에 따른 열/물질전달 및 압력강하 특성 - 정렬 단락배열 요철 -)

  • Lee, Sei-Young;Choi, Chung;Rhee, Dong-Ho;Cho, Hyung-Hee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.11
    • /
    • pp.1640-1649
    • /
    • 2001
  • The present study investigates the effects of various rib arrangements on heat/mass transfer in the cooling passage of gas turbine blades. A complex flow structure occurs in the cooling passage with rib turbulators which promote heat transfer on the wall. It is important to increase not only the heat transfer rates but also the uniformity of heat transfer in the cooling passage. A numerical computation is performed using a commercial code to calculate the flow structures and experiments are conducted to measure heat/mass transfer coefficients using a naphthalene sublimation technique. A square channel (50 mm $\times$ 50 mm) with rectangular ribs (4 mm $\times$ 5 mm) is used fur the stationary duct test. The experiments focus on the effects of rib arrangements and gap positions in the discrete ribs on the heat/mass transfer on the duct wall. The rib angle of attack is 60°and the rib-to-rib pitch is 32 mm, that is 8 times of the rib height. With the inclined rib angle of attack (60°), the parallel rib arrangements make a pair of counter rotating secondary flows in the cross section, but the cross rib arrangements make a single large secondary flow including a small secondary vortex. These secondary flow patterns affect significantly the heat/mass transfer on the ribbed wall. The heat/mass transfer in the parallel arrangements is 1.5 ∼2 times higher than that in the cross arrangements. However, the shifted rib arrangements change little the heat/mass transfer from the inline rib arrangements. The gap position in the discrete rib affects significantly the heat/mass transfer because a strong flow acceleration occurs locally through the gap.

Effects of Discrete Ribs on Pressure Drop in a Rotating Two-Pass Duct (단락요철이 회전덕트 내 압력강하에 미치는 영향)

  • Kim Kyung-Min;Lee Dong-Hyun;Cho Hyung-Hee
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.5
    • /
    • pp.443-450
    • /
    • 2006
  • The present study has been conducted to investigate the effects of rotation on heat/mass transfer and pressure drop characteristics in a two-pass square duct with and without discrete ribs. For stationary cases, the heat/mass transfer on the surfaces with and without discrete ribs is almost the same or reduced. For rotating cases, the gap flow affects differently the heat/mass transfer on leading and trailing surfaces with discrete ribs. On the leading surface of the first pass, the heat/mass transfer is slightly enhanced due to generating strong gap flow. On the trailing surface of the first pass, however, the heat/mass transfer is much decreased because the gap flow disturbs impingement of main flow. The phenomenon, that is, the heat/mass transfer discrepancy between the leading and trailing surfaces is distinctly presented with the increment of rotation number. The friction losses on each surface with discrete ribs are reduced because the blockage ratio decreases for both non-rotating and rotating cases. Therefore, high thermal performance appears in a duct with discrete ribs.

Experimental Study of Heat/Mass Transfer in Rotating Cooling Passages with Discrete Ribs (단락 요철이 설치된 내부 냉각유로에서 회전에 따른 열/물질전달 특성 연구)

  • Kim Kyung Min;Kim Sang In;Lee Dong Ho;Cho Hyung Hee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.5 s.236
    • /
    • pp.590-598
    • /
    • 2005
  • The present study has been conducted to investigate the effect of discrete ribs and rotation on heat/mass transfer characteristics in a two-pass square duct with $90^{\circ}-rib$ turbulators. The rib turbulator has a square cross section of 1.5 mm. The rib height-to-hydraulic diameter ratio $({e/D_{h})$ is 0.056, and the rib pitch-to-rib height ratio (p/e) is 10. The gap width is the same as the rib height. The rotation number ranges from 0.0 to 0.2 while Reynolds number is fixed to 10,000. In a stationary duct, the heat/mass transfer on the surfaces with discrete ribs is enhanced because the gap flow promotes local turbulence and flow mixing near the ribbed surface. In a rotating duct, the gap flow affects differently the heat/mass transfer on leading and trailing surfaces with discrete ribs. On the leading surface of the first pass, heat/mass transfer is increased due to the gap flow. On the trailing surface of the first pass, however, heat/mass transfer is decreased because the gap flow disturbs reattachment of main flow. The phenomenon, that is, the difference of heat transfer between the leading and the trailing surfaces is distinctly presented by rotation.

Heat/Mass Transfer Augmentation in a Square Duct . Roughened with Angled Discrete Ribs Having Narrow Gaps (정사각 덕트 내에서 열/물질전달 촉진을 위한 경사진 단락 요철의 좁은 틈새 효과)

  • Wu, Seong-Je;Lee, Sei-Young;Choi, Chung;Cho, Hyung-Hee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.1
    • /
    • pp.150-158
    • /
    • 2002
  • Local heat/mass transfer and friction loss in a square duct roughened with various types of continuous and discrete rib turbulators are investigated. The combined effects of the gap flows of the discrete ribs and the secondary flows are examined for the purpose of the reduction of thermally weak regions and the promotion of the uniformity of heat/mass transfer distributions as well as the ;augmentation of average heat/mass transfer. The rib-to-rib pitch to the rib height ratio (p/e) of 8 and the rib angles of 90° and 60° are selected with e/D$\_$h/=0.08. The vortical structure of the secondary flows induced by the parallel angled arrays are quite distinct from that induced by the cross angled arrays. This distinction influences on heat/mass transfer and friction loss in all the tested cases. The gap flows of the discrete ribs reduce the strength of the secondary flows but promote local turbulence and flow mixing. Consequently, the angled discrete ribs with the small gaps provide a more uniform heat/mass transfer distribution sustaining high average heat/mass transfer.

Effects of Discrete Rib-Turbulators on Heat/Mass Transfer Augmentation in a Rectangular Duct (사각 덕트 내부 열전달 향상을 위한 요철의 단락 효과)

  • Kwon, Hyuk-Jin;Wu, Seong-Je;Cho, Hyung-Hee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.5
    • /
    • pp.744-752
    • /
    • 2000
  • The influence of arrangement and length of discrete ribs on heat/mass transfer and friction loss is investigated. Mass transfer experiments are conducted to obtain the detailed local heat/mass transfer information on the ribbed wall. The aspect ratio (width/height) of the duct is 2.04 and the rib height is one tenth of the duct height, such that the ratio of the rib height to hydraulic diameter is 0.0743. The ratio of rib-to-rib distance to rib height is 10. The discrete ribs were made by dividing each continuous rib into 2, 3 or 5 pieces and attached periodically to the top and the bottom walls of the duct with a parallel orientation The combined effects of rib angle and length of the discrete ribs on heat/mass transfer ae considered for the rib angles $({\alpha})\;of\;90^{\circ}\;and\;45^{\circ}$. As the number of the discrete ribs increases, the uniformity of the heat/mass transfer distributions increases. For $(\alpha})=90^{\circ}$, the heat/mass transfer enhancement with the discrete ribs is remarkable, while the heat/mass transfer performances are slightly higher than that of the transverse continuous ribs due to the accompanied high friction loss penalty. For $(\alpha})=90^{\circ}$, the average heat/mass transfer coefficients and the heat/mass transfer performances decrease slightly with the discrete ribs compared to the case of the angled continuous ribs.

Effects of Surfactant Addition in Texturing Solution for Monocrystalline Si Solar Cells (단결정 실리콘 태양전지용 텍스쳐링 용액의 계면활성제 첨가 효과)

  • Kang, Byung Jun;Kwon, Soonwoo;Lee, Seung Hun;Chun, Seungju;Yoon, Sewang;Kim, Donghwan
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.74.1-74.1
    • /
    • 2010
  • 단결정 실리콘 태양전지 공정에서 이방성 습식 식각 용액을 이용하여 기판 표면에 피라미드 구조를 형성하는 것을 텍스쳐링이라고 한다. 실리콘 기판의 표면을 식각하여 요철구조를 만들어줌으로써 셀 내부로 입사되는 광량을 증가시켜 태양전지의 단락 전류 및 효율 향상 효과를 얻을 수 있다. 일반적인 태양전지 공정에서는 요철구조를 형성할 시 따로 마스크를 사용하지 않으며, 태양전지 급 웨이퍼를 절삭손상층 식각 한 후, 강염기성 용액과 알코올의 혼합용액에 담가서 이방성 식각을 실시하여 요철 구조를 형성한다. 본 연구는 기존의 텍스쳐링 공정에서 사용되는 대표적인 용액인 수산화칼륨(potassium hydroxide, KOH)과 알코올의 혼합용액과 사메틸수산화암모늄(Tetramethylammonium Hydroxide, TMAH)과 알코올의 혼합용액에 Triton X-100 계면활성제를 각각 첨가하여 실험을 진행하였다. 식각된 태양전지용 실리콘 기판의 표면은 주사전자현미경(Scanning Electron Microscope)을 통하여 관찰하였고, 분광광도계(UV/VIS/NIR Spectrophotometer)로 반사도 값을 측정하여 기판의 특성을 평가하였다.

  • PDF

Effects of Duct Aspect Ratios on Heat/Mass Transfer With Discrete V-Shaped Ribs (쐐기형 단락요철이 설치된 덕트의 종횡비가 열/물질 전달에 미치는 영향)

  • Lee, Dong-Hyun;Rhee, Dong-Ho;Cho, Hyung-Hee
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1453-1460
    • /
    • 2003
  • The present study investigates the effects of rib arrangements and aspect ratios of a rectangular duct simulating the cooling passage of a gas turbine blade. Two different V-shaped rib configurations are tested with the aspect ratios (W/H) of 3 to 6.82. One is the continuous V-shaped rib configuration with $60^{\circ}$ attack angle, and the other is the discrete V-shaped rib configuration with $45^{\circ}$ attack angle. The square ribs with the pitch to height ratio of 10.0 are installed on the test section in a parallel arrangement for both rib configurations. Reynolds numbers based on the hydraulic diameter are changed from 10,000 to 30,000. A naphthalene sublimation method is used to measure local heat/mass transfer coefficients. For the continuous V-shaped rib configuration, two pairs of counter-rotating vortices are generated in a duct, and high transfer region is formed at the center of the ribbed walls of the duct. However, for the discrete V-shaped rib configuration with $45^{\circ}$ attack angle, complex secondary flow patterns are generated in the duct due to its geometric feature, and more uniform heat/mass transfer distributions are obtained for all tested cases

  • PDF

RIE Damage Remove Etching Process for Solar Cell Surface Texturing Using the TMAH Etching

  • O, Jeong-Hwa;Gong, Dae-Yeong;Jo, Jun-Hwan;Jo, Chan-Seop;Yun, Seong-Ho;Lee, Jong-Hyeon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.584-584
    • /
    • 2012
  • 결정형 실리콘 태양전지 공정 중 표면 texturing 공정은 표면에 요철을 형성시켜 반사되는 빛 손실을 줄여서, 증가된 빛 흡수 양에 의해 단락전류(Isc)를 증가시키는데 그 목적이 있다. 표면 texturing 공정은 습식 식각과 건식 식각에 의한 방법으로 나눌 수 있다. 습식 식각은 KOH, TMAH, HNA 등의 실리콘 식각 용액을 사용하여 공정상의 위험도가 크고, 사용 후 용액의 폐기물에 의한 환경오염 문제가 있다. 건식 식각은 습식 식각과 달리 폐기물의 처리가 없고 미량의 가스를 이용한다. 그리고 다결정 실리콘 웨이퍼처럼 불규칙적인 결정방향에도 영향을 받지 않는 장점을 가지고 있어서 건식 식각을 이용한 표면 texturing 공정에 관한 많은 연구가 진행되고 있으며, 특히 RIE(reactive ion etching)를 이용한 태양전지 texturing 공정이 가장 주목을 받고 있다. 하지만 기존의 RIE를 이용하여 표면 texturing 공정을 하게 되면 500 nm 이하의 needle-like 구조의 표면이 만들어진다. Needle-like 구조의 표면은 전극을 형성할 때에 접촉 면적이 좁기 때문에 adhesion이 좋지 않은 것과 단파장 대역에서 광 손실이 많다는 단점이 있다. 본 논문에서는 기존의 RIE texturing의 단점을 보완하기 위해 챔버 내부에 metal-mesh를 장착한 후 RIE를 이용하여 $1{\mu}m$의 피라미드 구조를 형성하였고, RIE 공정 시 ion bombardment에 의한 표면 손상을 제거(RIE damage remove etching)하기 위하여 10초간 TMAH(Tetramethyl -ammonium hydroxide, 25 %) 식각 공정을 하였다.

  • PDF