• Title/Summary/Keyword: 단단 천음속 축류압축기

Search Result 6, Processing Time 0.025 seconds

Effects of Stator Shroud Injection on the Aerodynamic Performance of a Single-Stage Transonic Axial Compressor (정익 슈라우드 공기분사가 단단 천음속 축류압축기의 공력성능에 미치는 영향)

  • Dinh, Cong-Truong;Ma, Sang-Bum;Kim, Kwang Yong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.1
    • /
    • pp.9-19
    • /
    • 2017
  • In this study, stator shroud injection in a single-stage transonic axial compressor is proposed. A parametric study of the effect of stator shroud injection on aerodynamic performances was conducted using the three-dimensional Reynolds-averaged Navier-Stokes equations. The curvature, length, width, and circumferential angle of the stator shroud injector and the air injection mass flow rate were selected as the test parameters. The results of the parametric study show that the aerodynamic performances of the single-stage transonic axial compressor were improved by stator shroud injection. The aerodynamic performances were the most sensitive to the injection mass flow rate. Further, the total pressure ratio and adiabatic efficiency were the maximum when the ratio of circumferential angle was 10%.

Optimal Design for Stacking Line of Rotor Blade in a Single-Stage Transonic Axial Compressor (단단 천음속 축류압축기 동익의 Stacking Line 설계 최적화)

  • Jang Choon-Man;Abdus Samad;Kim Kwang-Yong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.9 no.3 s.36
    • /
    • pp.7-13
    • /
    • 2006
  • Shape optimization of a rotor blade in a single-stage transonic axial compressor has been performed using a response surface method and three-dimensional Navier-Stokes analysis. Two shape variables of the rotor blade, which are used to define a blade skew, are introduced to increase an adiabatic efficiency. Throughout the shape optimization of a rotor blade, the adiabatic efficiency is increased to about 2.2 percent compared to that of the reference shape of the stator. The increase in efficiency for the optimal shape of the rotor is due to the pressure enhancement, which is mainly caused by moving the separation position on the suction surface of rotor blade to the downstream direction.

Shape Optimization of a Stator Blade in a Single-Stage Transonic Axial Compressor (단단 천음속 축류압축기의 정익형상 최적설계)

  • Kim Kwang Yong;Jang Choon Man
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.5 s.236
    • /
    • pp.625-632
    • /
    • 2005
  • This paper describes the shape optimization of a stator blade in a single-stage transonic axial compressor. The blade optimization has been performed using response surface method and three-dimensional Navier-Stokes analysis. Two shape variables of the stator blade, which are used to define a stacking line, are introduced to increase an adiabatic efficiency. Data points for response evaluations have been selected by D-optimal design, and linear programming method has been used for an optimization on a response surface. Throughout the shape optimization of a stator blade, the adiabatic efficiency is increased to 5.8 percent compared to that of the reference shape of the stator. The increase of the efficiency is mainly caused by the pressure enhancement in the stator blade. Flow separation on the blade suction surface of the stator is also improved by optimizing the stator blade. It is noted that the optimization of the stator blade is also useful method to increase the adiabatic efficiency in the axial compressor as well as the optimization of a rotor blade, which is widely used now.

Application of k-w turbulence model to the analysis of the flow through a single stage axial-flow compressor (단단 축류압축기 유동해석에 대한 k-w 난류모델의 응용)

  • Lee, Joon-Suk;Kim, Kwang-Yong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.3 no.3 s.8
    • /
    • pp.7-11
    • /
    • 2000
  • A numerical study based on the three-dimensional thin-layer Navier-Stokes solver is carried out to analyze the flowfield through a single stage transonic compressor. Explicit fout-step Runge-Kutta scheme with spatially variable time step and implicit residual smoothing is used. The governing equations we discretized with explcit finite difference method. Mired-out average method is used at the interface between rotor and stator. And, an artificial dissipation model is used to assure the stability of solution. The results with k-w turbulence model were compared to the results with Baldwin-Lomax model, and physical phenomena of transonic compressor are presented. The two turbulence models give the results that show reasonably good agreements with experimental data.

  • PDF

Application of k-w turbulence model to the analysis of the flow through a single stage axial-flow compressor (단단 축류압축기 유동해석에 대한 k-w 난류모델의 응용)

  • Lee, Joon-Suk;Kim, Kwang-Yong
    • 유체기계공업학회:학술대회논문집
    • /
    • 1999.12a
    • /
    • pp.27-32
    • /
    • 1999
  • A numerical study based on the three-dimensional thin-layer Navier-Stokes solver is carried out to analyze the flowfield through a single stage transonic compressor. Explicit four-step Runge-Kutta scheme with spatially variable time step and implicit residual smoothing is used. The governing equations are discretized with exploit finite difference method. Mixed-out average method is used at the interface between rotor and stator. And, an artificial dissipation model is used to assure the stability of solution. The results with k-$\omega$ turbulence model were compared to the results with Baldwin-Lomax model, and physical phenomena of transonic compressor are presented. The two turbulence models give the results that show reasonably good agreements with experimental data.

  • PDF