Communications for Statistical Applications and Methods
/
v.5
no.3
/
pp.599-605
/
1998
본 연구에서는 단순구조 순환신경망을 이용한 신경망예측과 전통적인 시계열예측 방법을 이용하여, 순환변동이 있는 시계열자료의 단기예측 오차를 비교한다. 순환신경망모형의 입력자료를 변화시키는 개선된 학습방법을 적용하여 시계열자료를 학습하고, 신경망예측의 결과는 선형 AR(9)모형, 비선형 SETAR모형 그리고 이들의 결합모형을 이용한 예측결과와 비교한다. 실증분석에 적용된 시계열자료는 1700년부터 1987년 까지의 태양흑점 자료이며 예측에 이용된 검정자료는 1980년부터 8년 간의 자료이다.
Proceedings of the Korea Water Resources Association Conference
/
2008.05a
/
pp.1007-1012
/
2008
유역통합수자원관리의 시작은 기상예측정보의 제공으로부터 시작된다. 하지만, 기상예측정보는 단기, 중기, 장기로 구분되며, 제공되는 정보가 수자원 운영에 필요한 정보와 시간적으로나 공간적으로 차이가 나며, 가공에 많은 전문가들의 노력이 필요하여 실무에서의 적용에 많은 어려움이 따른다. 따라서 본 연구에서는 이러한 문제들을 해결하고 용이하게 수자원 운영자에게 필요한 기상정보를 적절한 형태의 가공을 통하여 자동적으로 제공해 주는데 그 목적이 있다. 이러한 시스템의 구축을 통해 향후 수자원 운영에 있어 필수적인 의사결정 정보를 제공해 주어 수자원의 이용효율을 높이고자 한다. 구축된 시스템은 금강 유역에 대해 소유역단위로 장기 유출의 입력자료인 일단위 예측 강수를 30일간 제공하도록 시스템을 구축하였다. 단기(1일$\sim$2일)에는 RDAPS의 모의 결과인 Grib파일을 자동 추출하여 예측 강수를 제공한다. 1일에 두 번 모의되는 RDAPS의 결과를 일단위로 제공하기 위해 여러 가지 case별 분석을 실시하여 가장 적합한 기법을 이용하여 일단위 시계열을 구축하는 시스템을 설계하였다. 중기(3일$\sim$10일)에는 GDAPS 결과인 Grib파일을 자동 추출하여 유역단위 시계열을 구축한 뒤 과거 자료를 이용한 연 평균 자료를 이용하여 가중치를 곱하여 시계열을 구축하였다. 장기(11일$\sim$30일) 시계열의 구축을 위해서는 단기 및 중기 예측 시계열을 이용하여 과거 시계열 자료와의 통계적 비교 분석을 이용하여 유사 시계열을 추출한 후 과거 자료에 대한 평균값과 기상 전망을 이용하여 가중치를 부여하는 방법 등을 이용하여 시스템을 구축하였다. 본 시스템은 한국수자원공사에서 운영 중인 RRFS모형의 입력 자료를 자동 생성할 수 있는 기능을 제공하도록 설계되었다. 이러한 시스템의 구축을 통해 기상정보를 다루는데 익숙하지 않은 수자원 운영자들에게 비교적 용이하게 유역단위 기상예측 정보를 추출하는데 큰 도움이 될 것으로 기대한다.
Proceedings of the Korean Society of Computer Information Conference
/
2012.01a
/
pp.263-264
/
2012
본 논문은 여러 개의 독립적인 시계열로 구성된 시계열 패널 자료를 이용하여 비선형 모형인 GRCA모형과 신경망을 이용하여 예측값을 구하여 서로 비교 분석하고자 한다. 먼저 GRCA모형에 대하여 연구하고 신경망의 구조와 예측값을 구하기 위한 여러 가지 변환함수를 유도한다. 단기 예측에서는 신경망 방법의 예측값이 더 좋았고, 장기예측에서는 비선형모형을 이용한 예측값이 더 좋은 것으로 나타났다.
Journal of the Korean Institute of Intelligent Systems
/
v.16
no.6
/
pp.730-735
/
2006
This paper proposes a time series prediction method for the short term electrical load will) the fuzzy system and the genetic algorithm. At first, we obtain the optimal fuzzy membership function using the genetic algorithm. With the optimal fuzzy rules and its input differences, a better time prediction system may be obtained. We obtain good results for the time prediction of the short term electric load by the proposed algorithm. In addition we implement the graphic user interface for the proposed algorithms. Finally, we implement the regional prediction system for the electric load.
We have compared and predicted for non-linear time series data which are real data having different variences using GRCA(1) model and neural network method. In particular, using Korea Composite Stock Price Index rate, mean square errors of prediction are obtained in genaralized random coefficient autoregressive model and neural network method. Neural network method prove to be better in short-term forecasting, however GRCA(1) model perform well in long-term forecasting.
Ha, Jun-Su;Lim, Chae Hwan;Cho, Kwang-Hee;Ha, Hun-Koo
Journal of Korea Port Economic Association
/
v.37
no.3
/
pp.1-17
/
2021
Forecasting the daily volume of container is important in many aspects of port operation. In this article, we utilized a machine-learning algorithm based on decision tree to predict future container throughput of Busan port. Accurate volume forecasting improves operational efficiency and service levels by reducing costs and shipowner latency. We showed that our method is capable of accurately and reliably predicting container throughput in short-term(days). Forecasting accuracy was improved by more than 22% over time series methods(ARIMA). We also demonstrated that the current method is assumption-free and not prone to human bias. We expect that such method could be useful in a broad range of fields.
1997년말 발생한 외환위기 이후 불확실성의 증대로 시계열모형을 이용한 경제예측에 한계가 노정되고 있다. 이를 극복하기 위하여 경제주체의 기대(expectation)를 파악할수 있는 기업경기실사지수를 경제예측에 도입할 필요가 있다. 본고에서는 기업경기실사지수를 이용한 모형과 시계열모형을 추정하고 이들을 예측력 측면에서 비교, 분석해보았다. 분석결과 불확실성이 높았던 외환위기이후 기간에는 기업경기실사지수를 이용한 모형이 시계열모형보다 예측력면에서 우수한 것으로 나타났다.
본 연구에서는 안정적인 물 공급과 에너지의 효율적 사용을 위한 단기 물 수요예측에 대하여 데이터 마이닝 기법의 적용성을 검토하고자 한다. 물 공급이 이루어진 요일과 특이일에 대한 시계열 분석을 통한 단기 물 수요예측과 데이터 마이닝 기법을 적용한 결과를 상호 비교하여 데이터 마이닝 기법의 적용성을 제시하고자 한다. 이를 통하여 단기 물 수요예측알고리즘의 실용화 가능성을 높일 뿐만 아니라 실시간 예측을 위한 기초 데이터 마이닝 체계를 구축하고자 한다.
Proceedings of the Korea Water Resources Association Conference
/
2004.05b
/
pp.1178-1182
/
2004
시계열 자료의 분석과 예측은 수문학분야에서 매우 중요하면, 최근 들어 특정한 수문시계열에서 카오스 특성이 발견되고 있다. 카오스 특성을 갖는 수문시계열의 예측에 있어, 기존의 거의 모든 연구는 시스템의 특성을 파악한 뒤 예측을 실시하는 표준접근법이 채택되어왔다. 그러나 Phoon 등은 시스템의 특성분석에 앞서 예측을 실시하고, 상태공 매개변수가 시스템의 특성분석단계가 아닌 예측단계에서 평가되는 가역접근법을 제안하였다. 본 연구에서는 Phoon 등이 제안한 가역접근법과 기존에 널리 적용되어온 표준접근법을 실제 일유출량 자료에 적용함으로써, 가역접근법의 적용성을 검토하고 카오스 시계열의 특성을 파악하였다. 본 연구에서 사용한 비선형 예측 기법으로는 카오스이론이 적용된 부분근사화 기법을 이용하였다. 카오스 특성분석을 통해, Bear 강 일유출량 시계열 자료에서 카오스 특성이 나타남을 알 수 있었다. 표준접근법과 가역접근법을 이용하여 Bear 강의 일유출량 자료에 대하여 예측을 실시한 결과, 카오스 특성을 갖는 일유출량 시계열 자료의 단기 예측의 우수성을 알 수 있었으면, 가역접근법이 표준접근법에 비해 좋은 결과를 나타내었다. 특히, 가역접근법은 예측단계에서 예측시간(T)에 대하여 예측매개변수를 최적화시킴으로써 보다 정밀한 예측을 할 수 있었으며, 시스템에 대한 정보손실이 발생하였을 경우 예측에 대한 상태공간 매개변수를 다시 추정해야 하는 표준접근법에 비해 실제적 적용성이 매우 우수하였다.
이 연구에서는 유전자알고리즘과 인공신경망의 특성을 결합한 유전자신경망모형에 대하여 논의한다. 이 모형을 이용하여 단기 시계열자료를 예측한다. 그 예측 결과는 유전자신경망모형이 역전파 신경망모형에서 보다 더 작은 예측오차를 보였다. 역전파 신경망보다 더 효과적임을 보임으로써 유전자신경망모형을 이용한 시계열자료 예측이 보다 효율적인 방법임을 제시한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.