• Title/Summary/Keyword: 단기 시계열 예측

Search Result 133, Processing Time 0.032 seconds

순환신경망모형을 이용한 단기 시계열예측

  • 윤여창
    • Communications for Statistical Applications and Methods
    • /
    • v.5 no.3
    • /
    • pp.599-605
    • /
    • 1998
  • 본 연구에서는 단순구조 순환신경망을 이용한 신경망예측과 전통적인 시계열예측 방법을 이용하여, 순환변동이 있는 시계열자료의 단기예측 오차를 비교한다. 순환신경망모형의 입력자료를 변화시키는 개선된 학습방법을 적용하여 시계열자료를 학습하고, 신경망예측의 결과는 선형 AR(9)모형, 비선형 SETAR모형 그리고 이들의 결합모형을 이용한 예측결과와 비교한다. 실증분석에 적용된 시계열자료는 1700년부터 1987년 까지의 태양흑점 자료이며 예측에 이용된 검정자료는 1980년부터 8년 간의 자료이다.

  • PDF

Development of Weather Information System for Water Resources Management of Guem River (금강유역 수자원 운영을 위한 기상정보제공시스템 구축)

  • Jeong, Chang-Sam;Hwang, Man-Ha;Ko, Ick-Hwan
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2008.05a
    • /
    • pp.1007-1012
    • /
    • 2008
  • 유역통합수자원관리의 시작은 기상예측정보의 제공으로부터 시작된다. 하지만, 기상예측정보는 단기, 중기, 장기로 구분되며, 제공되는 정보가 수자원 운영에 필요한 정보와 시간적으로나 공간적으로 차이가 나며, 가공에 많은 전문가들의 노력이 필요하여 실무에서의 적용에 많은 어려움이 따른다. 따라서 본 연구에서는 이러한 문제들을 해결하고 용이하게 수자원 운영자에게 필요한 기상정보를 적절한 형태의 가공을 통하여 자동적으로 제공해 주는데 그 목적이 있다. 이러한 시스템의 구축을 통해 향후 수자원 운영에 있어 필수적인 의사결정 정보를 제공해 주어 수자원의 이용효율을 높이고자 한다. 구축된 시스템은 금강 유역에 대해 소유역단위로 장기 유출의 입력자료인 일단위 예측 강수를 30일간 제공하도록 시스템을 구축하였다. 단기(1일$\sim$2일)에는 RDAPS의 모의 결과인 Grib파일을 자동 추출하여 예측 강수를 제공한다. 1일에 두 번 모의되는 RDAPS의 결과를 일단위로 제공하기 위해 여러 가지 case별 분석을 실시하여 가장 적합한 기법을 이용하여 일단위 시계열을 구축하는 시스템을 설계하였다. 중기(3일$\sim$10일)에는 GDAPS 결과인 Grib파일을 자동 추출하여 유역단위 시계열을 구축한 뒤 과거 자료를 이용한 연 평균 자료를 이용하여 가중치를 곱하여 시계열을 구축하였다. 장기(11일$\sim$30일) 시계열의 구축을 위해서는 단기 및 중기 예측 시계열을 이용하여 과거 시계열 자료와의 통계적 비교 분석을 이용하여 유사 시계열을 추출한 후 과거 자료에 대한 평균값과 기상 전망을 이용하여 가중치를 부여하는 방법 등을 이용하여 시스템을 구축하였다. 본 시스템은 한국수자원공사에서 운영 중인 RRFS모형의 입력 자료를 자동 생성할 수 있는 기능을 제공하도록 설계되었다. 이러한 시스템의 구축을 통해 기상정보를 다루는데 익숙하지 않은 수자원 운영자들에게 비교적 용이하게 유역단위 기상예측 정보를 추출하는데 큰 도움이 될 것으로 기대한다.

  • PDF

Prediction for Time Series Panel Data using Neural Network (신경망을 이용한 시계열 패널자료의 예측)

  • Kim, In-Kyu
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2012.01a
    • /
    • pp.263-264
    • /
    • 2012
  • 본 논문은 여러 개의 독립적인 시계열로 구성된 시계열 패널 자료를 이용하여 비선형 모형인 GRCA모형과 신경망을 이용하여 예측값을 구하여 서로 비교 분석하고자 한다. 먼저 GRCA모형에 대하여 연구하고 신경망의 구조와 예측값을 구하기 위한 여러 가지 변환함수를 유도한다. 단기 예측에서는 신경망 방법의 예측값이 더 좋았고, 장기예측에서는 비선형모형을 이용한 예측값이 더 좋은 것으로 나타났다.

  • PDF

A Study on development of short term electric load prediction system with the genetic algorithm and the fuzzy system (유전자알고리즘과 퍼지시스템을 이용한 단기부하예측 시스템 개발에 관한 연구)

  • Kang, Hwan-Il;Jang, Woo-Seok
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.16 no.6
    • /
    • pp.730-735
    • /
    • 2006
  • This paper proposes a time series prediction method for the short term electrical load will) the fuzzy system and the genetic algorithm. At first, we obtain the optimal fuzzy membership function using the genetic algorithm. With the optimal fuzzy rules and its input differences, a better time prediction system may be obtained. We obtain good results for the time prediction of the short term electric load by the proposed algorithm. In addition we implement the graphic user interface for the proposed algorithms. Finally, we implement the regional prediction system for the electric load.

Prediction for Nonlinear Time Series Data using Neural Network (신경망을 이용한 비선형 시계열 자료의 예측)

  • Kim, Inkyu
    • Journal of Digital Convergence
    • /
    • v.10 no.9
    • /
    • pp.357-362
    • /
    • 2012
  • We have compared and predicted for non-linear time series data which are real data having different variences using GRCA(1) model and neural network method. In particular, using Korea Composite Stock Price Index rate, mean square errors of prediction are obtained in genaralized random coefficient autoregressive model and neural network method. Neural network method prove to be better in short-term forecasting, however GRCA(1) model perform well in long-term forecasting.

Forecasting the Daily Container Volumes Using Data Mining with CART Approach (Datamining 기법을 활용한 단기 항만 물동량 예측)

  • Ha, Jun-Su;Lim, Chae Hwan;Cho, Kwang-Hee;Ha, Hun-Koo
    • Journal of Korea Port Economic Association
    • /
    • v.37 no.3
    • /
    • pp.1-17
    • /
    • 2021
  • Forecasting the daily volume of container is important in many aspects of port operation. In this article, we utilized a machine-learning algorithm based on decision tree to predict future container throughput of Busan port. Accurate volume forecasting improves operational efficiency and service levels by reducing costs and shipowner latency. We showed that our method is capable of accurately and reliably predicting container throughput in short-term(days). Forecasting accuracy was improved by more than 22% over time series methods(ARIMA). We also demonstrated that the current method is assumption-free and not prone to human bias. We expect that such method could be useful in a broad range of fields.

Economic Forecasting under the Korean Currency Crisis: Short-term Forecasting of GDP with Business Survey Data (외환위기하에 경제예측 -기업경기실사지수를 이용한 GDP 단기예측-)

  • 이긍희
    • The Korean Journal of Applied Statistics
    • /
    • v.12 no.2
    • /
    • pp.397-404
    • /
    • 1999
  • 1997년말 발생한 외환위기 이후 불확실성의 증대로 시계열모형을 이용한 경제예측에 한계가 노정되고 있다. 이를 극복하기 위하여 경제주체의 기대(expectation)를 파악할수 있는 기업경기실사지수를 경제예측에 도입할 필요가 있다. 본고에서는 기업경기실사지수를 이용한 모형과 시계열모형을 추정하고 이들을 예측력 측면에서 비교, 분석해보았다. 분석결과 불확실성이 높았던 외환위기이후 기간에는 기업경기실사지수를 이용한 모형이 시계열모형보다 예측력면에서 우수한 것으로 나타났다.

  • PDF

Data mining analysis for short-term water demand forecasting (물 수요예측을 위한 데이터 마이닝 기법 분석)

  • Shin, Gang-Wook;Hong, Sung-Taek
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1771_1772
    • /
    • 2009
  • 본 연구에서는 안정적인 물 공급과 에너지의 효율적 사용을 위한 단기 물 수요예측에 대하여 데이터 마이닝 기법의 적용성을 검토하고자 한다. 물 공급이 이루어진 요일과 특이일에 대한 시계열 분석을 통한 단기 물 수요예측과 데이터 마이닝 기법을 적용한 결과를 상호 비교하여 데이터 마이닝 기법의 적용성을 제시하고자 한다. 이를 통하여 단기 물 수요예측알고리즘의 실용화 가능성을 높일 뿐만 아니라 실시간 예측을 위한 기초 데이터 마이닝 체계를 구축하고자 한다.

  • PDF

Nonlinear Forecasting of Daily Runoff Using Inverse Approach Method (가역접근법을 이용한 일유출량 자료의 비선형 예측)

  • Jeong, Dong Kug;Lee, Bae Sung
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2004.05b
    • /
    • pp.1178-1182
    • /
    • 2004
  • 시계열 자료의 분석과 예측은 수문학분야에서 매우 중요하면, 최근 들어 특정한 수문시계열에서 카오스 특성이 발견되고 있다. 카오스 특성을 갖는 수문시계열의 예측에 있어, 기존의 거의 모든 연구는 시스템의 특성을 파악한 뒤 예측을 실시하는 표준접근법이 채택되어왔다. 그러나 Phoon 등은 시스템의 특성분석에 앞서 예측을 실시하고, 상태공 매개변수가 시스템의 특성분석단계가 아닌 예측단계에서 평가되는 가역접근법을 제안하였다. 본 연구에서는 Phoon 등이 제안한 가역접근법과 기존에 널리 적용되어온 표준접근법을 실제 일유출량 자료에 적용함으로써, 가역접근법의 적용성을 검토하고 카오스 시계열의 특성을 파악하였다. 본 연구에서 사용한 비선형 예측 기법으로는 카오스이론이 적용된 부분근사화 기법을 이용하였다. 카오스 특성분석을 통해, Bear 강 일유출량 시계열 자료에서 카오스 특성이 나타남을 알 수 있었다. 표준접근법과 가역접근법을 이용하여 Bear 강의 일유출량 자료에 대하여 예측을 실시한 결과, 카오스 특성을 갖는 일유출량 시계열 자료의 단기 예측의 우수성을 알 수 있었으면, 가역접근법이 표준접근법에 비해 좋은 결과를 나타내었다. 특히, 가역접근법은 예측단계에서 예측시간(T)에 대하여 예측매개변수를 최적화시킴으로써 보다 정밀한 예측을 할 수 있었으며, 시스템에 대한 정보손실이 발생하였을 경우 예측에 대한 상태공간 매개변수를 다시 추정해야 하는 표준접근법에 비해 실제적 적용성이 매우 우수하였다.

  • PDF

Time Series Forecasting Based On Genetic Neural Network (유전자신경망을 이용한 시계열예측)

  • Yoon, YeoChang
    • Annual Conference of KIPS
    • /
    • 2010.04a
    • /
    • pp.1106-1108
    • /
    • 2010
  • 이 연구에서는 유전자알고리즘과 인공신경망의 특성을 결합한 유전자신경망모형에 대하여 논의한다. 이 모형을 이용하여 단기 시계열자료를 예측한다. 그 예측 결과는 유전자신경망모형이 역전파 신경망모형에서 보다 더 작은 예측오차를 보였다. 역전파 신경망보다 더 효과적임을 보임으로써 유전자신경망모형을 이용한 시계열자료 예측이 보다 효율적인 방법임을 제시한다.