• Title/Summary/Keyword: 단기통 엔진

Search Result 55, Processing Time 0.025 seconds

Characteristics the Pressure Variations according to the Exhaust Pipe of 4-Stroke Single Engine (4행정 단기통 엔진의 배기관에 따른 압력 변동 특성)

  • Lee, Hyo-Deok;Choi, Seok-Cheun;Lee, Sang-Chul;Lee, Kwang-Young;Jeong, Hyo-Min;Chung, Han-Shik
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1666-1671
    • /
    • 2004
  • In this study, a experimental method has been introduced for the various exhaust pipe geometry of 4-stroke single engine. The main experimental parameters are the variation of exhaust pipe diameters and lengths, to measuring the pulsating flow when the intake and exhaust valves are working, As the results of experimental test, the various exhaust geometry were influenced strongly on the exhaust pressure. As the exhaust pipe diameter was decreased, the amplitude and the number of compression wave in exhaust pressure was increased. According to decreasing pipe diameter, the number of compression wave in exhaust pressure was decreased. When the pipe diameter was increase, the second amplitude was increased.

  • PDF

Effect of Ultra-high Injection Pressure on Combustion and Emission Characteristics in a Single-cylinder Diesel Engine (초고압 분사 압력 적용에 따른 단기통 디젤 엔진에서의 연소 및 배기 특성에 관한 연구)

  • Cho, Wonkyu;Kang, Seungwoo;Bae, Choongsik;Kim, Youngho
    • 한국연소학회:학술대회논문집
    • /
    • 2015.12a
    • /
    • pp.41-44
    • /
    • 2015
  • Experimental study was conducted to investigate the effect of ultra-high injection pressure on combustion and emission characteristics in a single-cylinder diesel engine. Electronically controlled ultra-high pressure fuel injection system consistently supplied the fuel of ultra-high pressure up to 250 MPa. Various injection pressures, 40 to 250 MPa, were applied and compared. A injector with eight identical nozzle holes which have diameter of $105{\mu}m$ was used. The results showed high potential to improve the nitrogen oxide (NOx) and particulate matter (PM) trade-off relationship with an ultra-high injection pressure and the exhaust gas recirculation (EGR).

  • PDF

A Study on Combustion and Characteristics of Exhaust Gas Properties for Combustion Chamber (연소실 형상에 따른 연소 및 배기가스 배출물 특성에 관한 연구)

  • 김대열;한영출;주신혁;박병완
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.1
    • /
    • pp.66-73
    • /
    • 2004
  • This paper presents characteristics of combustion and exhaust gas properties according to variation of the combustion chamber for economy and emissions standards. In order to use combustion and exhaust gas properties data, it is necessary to build some data base, which use cylinder pressure sensor and emission tester. A feasibility and necessity of combustion pressure based cylinder spark timing control has been examined. So, this was obtained the coefficient of variation(COV) and the specific fuel consumption(sfc). Using the results of the test, the effects of the variable combustion chamber can be improved combustion stability and be reduced exhaust emission.

Study on Noise Generation Characteristics of Simulated EGR System for Compression Ignition Diesel Engine (압축착화 디젤엔진의 모사 EGR 시스템에 의한 소음 특성 변화 분석)

  • Park, B.;Yoon, S.;Park, S.;Park, J.
    • Journal of ILASS-Korea
    • /
    • v.19 no.4
    • /
    • pp.204-210
    • /
    • 2014
  • Experimental study was conducted to investigate the effect of EGR(exhaust gas recirculation) on engine noise using single cylinder combustion ignition engine. Under constant engine rotary speed of 1200 RPM, 8 mg fuel quantity was injected with 15, 18 and 21% of oxygen ratio and 1400 bar of injection pressure. Using the in-cylinder pressure data acquired by a piezoelectric transducer, the engine performance parameters were calculated. Radiated engine noise measured for 10 seconds was analyzed using spectral characteristics and sound quality metrics such as loudness, sharpness, roughness. From the obtained engine performance parameters and sound quality metrics, effect of oxygen ratio of the premixed air, start of injection timing on frequency characteristic and sound quality metrics were analyzed. Correlation analysis was conducted between MPRR(maximum pressure rise rate), RI(ringing intensity) and sound quality metrics. RI was identified as the most important factor having influence on the sound quality metrics.

Effect of fuel injection timing and pressure on the combustion and spray behavior characteristics of diesel fuel for naval vessel (연료분사시기와 압력이 함정용 디젤연료의 분무 및 연소특성에 미치는 영향)

  • Lee, Hyung-min
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.9
    • /
    • pp.911-917
    • /
    • 2015
  • The objective of this work focuses on the analysis of injection rate and macroscopic spray behavior characteristics with injection pressures as well as combustion and exhaust emission characteristics with injection timing and injection pressure by using a common rail single-cylinder diesel engine. The injection rate was measured by applying the Bosch method, and macroscopic spray behavior characteristics were analyzed with a constant-volume vessel and a high-speed camera. In addition, combustion and emission characteristics were analyzed in a common-rail single-cylinder diesel engine with precise control of fuel injection timing and pressure. For injection pressures of 30MPa and 50MPa, the injection rate was higher at 50 MPa, and the spray development (penetration) was also higher in the same elapsed time. The peak in-cylinder pressure and rate of heat release showed a tendency to decline as injection timing was delayed, and the peak in-cylinder pressure and rate of heat release were slightly higher for higher injection pressures. Higher injection pressures also reduced the mean effective pressure, while the indicated mean effective pressure and torque increased as injection timing was delayed to TDC. Nitrogen oxides had a peak level at injection timings of $BTDC20^{\circ}$(30MPa) and $BTDC15^{\circ}$(50MPa); carbon monoxide emissions were reduced by delaying injection timing from $BTDC30^{\circ}$.

Effect of Ethanol Content on Fine Soot Particle Emission from a Diesel-Ethanol Blended Fuel Diesel Engine (디젤-에탄올 혼합연료의 에탄올 함량이 미세 그을음(Soot) 입자 배출특성에 미치는 영향)

  • Park, Su-Han;Cha, June-Pyo;Kwon, Seok-Ju;Park, Sung-Wook;Lee, Chang-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.12
    • /
    • pp.1359-1365
    • /
    • 2011
  • The purpose of this study is to investigate the effect of ethanol content on the emission of nanosized particles from a diesel-ethanol blended fuel engine. The engine combustion and exhaust emission characteristics of a singlecylinder diesel engine were analyzed using an emission analyzer and an SMPS(scanning mobility particle sizer). The analysis revealed that soot emission increased with the ignition delay. When the ignition delay was fixed, an increase in the ethanol content caused a decrease in the soot emission. With an increase in the ethanol blending ratio, the number concentration and mass distribution of nanosized particles generally decreased. However, for 30% ethanol blending, large particles were observed because of the agglomeration of soot particles, and consequently, the particle mass increased.

Particulate Emissions from a Direct Injection Spark-ignition Engine Fuelled with Gasoline and LPG (가솔린 및 LPG 연료를 사용하는 직접분사식 불꽃점화엔진에서 배출되는 극미세입자 배출 특성에 관한 연구)

  • Lee, Seok-Hwan;Oh, Seung-Mook;Kang, Kern-Yong;Cho, Jun-Ho;Cha, Kyoung-Ok
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.3
    • /
    • pp.65-72
    • /
    • 2011
  • In this study, the numbers, sizes of particles from a single cylinder direct injection spark-ignition (DISI) engine fuelled with gasoline and LPG are examined over a wide range of engine operating conditions. Tests are conducted with various engine loads (2~10bar of IMEP) and fuel injection pressures (60, 90, and 120 bar) at the engine speed of 1,500 rpm. Particles are sampled directly from the exhaust pipe using rotating disk thermodiluter. The size distributions are measured using a scanning mobility particle sizer (SMPS) and the particle number concentrations are measured using a condensation particle counter (CPC). The results show that maximum brake torque (MBT) timing for LPG fuel is less sensitive to engine load and its combustion stability is also better than that for gasoline fuel. The total particle number concentration for LPG was lower by a factor of 100 compared to the results of gasoline emission due to the good vaporization characteristic of LPG. Test result presents that LPG for direct injection spark ignition engine help the particle emission level to reduce.

A Study on Measurements of PM Size in a Single Cylinder Common-rail Diesel Engine Exhaust using LII Method (레이저 유도 백열법을 이용한 단기통 커먼레일 디젤 엔진 배기에서의 PM 크기 계측에 관한 연구)

  • Chun, Hong-Sik;Kim, Hui-Jun;Ryu, Hoon-Chul;Park, Jong-Il;Hahn, Jae-Won;Chun, Kwang-Min
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.3
    • /
    • pp.95-102
    • /
    • 2006
  • Recently particulate matter(PM) emission regulations are becoming more strict for diesel engines. There is increasing interest for measuring not only concentration but also size of the particles. Laser-induced incandescence (LII) has emerged as a promising technique for measuring particle volume fraction and size. In this study, the Simple Time Resolved-LII method was applied to exhaust of Ethylene diffusion flame and diesel engine exhaust for measuring soot and PM size. The particle size data from LII technique were calibrated using Field Emission Scanning Electron Microscope(FE-SEM) and Transmission Electron Microscope(TEM) photographs. In diesel engine experiments for particle size measurement, results from LII measurement are in a good agreement with those from TEM photograph, and difference between two measurements was less than 16%.

Lean Burn Characteristics in a Heavy Duty Liquid Phase LPG Injection SI Engine (대형 액상분사식 LPG 엔진의 희박연소특성에 관한 연구)

  • 오승묵;김창업;강건용;우영민;배충식
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.4
    • /
    • pp.1-11
    • /
    • 2004
  • Combustion and fuel distribution characteristics of heavy duty engine with the liquid phase LPG injection(LPLI) were studied in a single cylinder engine, Swirl ratio were varied between 1.2, 2.3, and 3.4 following Ricardo swirl number(Rs) definition, Rs=2.3 showed the best results with lower cycle-by-cycle variation and shorter burning duration in the lean region while strong swirl(Rs=3.4) made these worse for combustion enhancement. Excessive swirl resulted in reverse effects due to high heat transfer and initial flame kernel quenching. Fuel injection timings were categorized with open valve injection(OVI) and closed valve injection(CVI). Open valve injection showed shorter combustion duration and extended lean limit. The formation of rich mixture in the spark plug vicinity was achieved by open valve injection. With higher swirl strength(Rs=3.4) and open valve injection, the cloud of fuel followed the flow direction and the radial air/fuel mixing was limited by strong swirl flow. It was expected that axial stratification was maintained with open-valve injection if the radial component of the swirling motion was stronger than the axial components. The axial fuel stratification and concentration were sensitive to fuel injection timing in case of Rs=3.4 while those were relatively independent of the injection timing in case of Rs=2.3.

Characteristics of Simultaneous Removal of NOx and PM over a Hybrid System of LNT/DPF + SCR/DPF in a Single Cylinder Diesel Engine (단기통 디젤엔진에서 LNT/DPF + SCR/DPF 하이브리드 시스템의 NOx 및 PM 동시저감 특성)

  • Kang, Wooseok;Park, Su Han;Choi, Byungchul
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.24 no.2
    • /
    • pp.152-160
    • /
    • 2016
  • The market demand for diesel engine tends to increase in general passenger cars as well as commercial vehicles because of its advantages. However, to meet the vehicle emissions regulation which will be more stringent in the future, it is necessary to plurally apply all after-treatment technologies such as diesel oxidation catalyst (DOC), catalyzed diesel particulate filter (CDPF), lean NOx trap (LNT) and selective catalytic reduction (SCR), and so on. Accordingly, the exhaust after-treatment system for diesel vehicle requires the technology of minimizing the numbers of catalysts by integrating every individual catalysts. The purposes of this study is to develop hybrid exhaust after-treatment device system which simultaneously uses LNT/DPF and SCR/DPF catalyst concurrently reducing NOx and particulate matter (PM). As the results, the hybrid system with $NH_3$ generated at LNT/DPF working as a reducing agent of SCR/DPF catalyst, improving NOx conversion rate, was found to be more excellent in de-NOx performance than that in LNT/DPF alone system.