• 제목/요약/키워드: 단극 하전

검색결과 8건 처리시간 0.015초

간접 광대전에 의한 서브 마이크론 입자의 단극하전 특성 (The Unipolar Charging Characteristics of Submicron Particles by Using an Indirect Photoelectric Charging)

  • 최영주;김상수
    • 대한기계학회논문집B
    • /
    • 제27권6호
    • /
    • pp.677-684
    • /
    • 2003
  • A new unipolar aerosol charger was developed by using an indirect photoelectric charging. The charger consists of two coaxial tubes, the inner UV lamp wrapped with stainless mesh and the outer Al cylinder. In this study, the effects of flow rate, particle size, and electric field were examined to search the optimal charging conditions with experimental and numerical methods. Monodisperse NaCl particles were fed into an annular space and the particles were charged by negative ions generated from Al plate exposed to the UV light. According to experimental results, the average number of elementary charge on particles increases from 2.5 to 5.5 as particle size increases from 50nm to 130nm at 2.5 L/min and 100V. The average number of elementary charge on particles was maximized at 25V as the electric potential between the stainless mesh and Al plate was varied from 0V to 400V.

응축 증발법을 통한 서브마이크론 입자의 단극하전 특성 (Characteristics of Unipolar Charging of the Submicron Particles by the Condensation-Evaporation Method)

  • 최영주;김상수
    • 대한기계학회논문집B
    • /
    • 제30권2호
    • /
    • pp.186-192
    • /
    • 2006
  • We applied a new charging system using the condensation and evaporation method to charge the submicron particles with a uniform charging performance. The monodispersed NaCl submicron particles were condensed by n-butanol vapor and grew up to micron droplets with a same size, regardless of their initial size. Those condensed droplets were charged in an indirect corona charger. The indirect corona charger consisted of the ion generation zone and the particle charging zone. In the ion generation zone, Ions were generated by corona discharge and some of them moved into the particle charging zone by a carrier gas and mixed with the condensed droplet. And finally, the charged and condensed droplets dried through an evaporator to shrink to their original size. The average charge and penetration rate of the particles before and after evaporation were measured by CPC and aerosol electrometer and compared with those of a conventional corona charger. The results showed that the average charge was $5\~7$ charges and the penetration rate was over $90\%$, regardless of the initial particle size.

비구형 입자의 형상에 따른 단극 확산 하전 특성 (Effects of Particle Shapes on Unipolar Diffusion Charging of Non-Spherical Particles)

  • 오현철;박형호;김상수
    • 대한기계학회논문집B
    • /
    • 제28권5호
    • /
    • pp.501-509
    • /
    • 2004
  • Unipolar diffusion charging of non-spherical particles was investigated for various particle shapes. We researched with TiO$_2$agglomerates produced by the thermal decomposition of titanium tetraisopropoxide (TTIP) vapor. TTIP was converted into TiO$_2$, in the furnace reactor and was subsequently introduced into the sintering furnace. Increasing the temperature in the sintering furnace, aggregates were restructured into higher fractal dimensions. The aggregates were classified according to their mobility using a differential mobility analyzer. The projection area and the mass fractal dimension of particles were measured with an image processing technique performed by using transmission electron microscope (TEM) photograph. The selected aggregates were charged by the indirect photoelectric-charger and the average number of charges per particle was measured by an aerosol electrometer and a condensation particle counter. For the particles of same mobility diameter, our results showed that the particle charge quantity decreases as the sintering temperature increases. This result is understandable because particles with lower fractal dimension have larger capacitance and geometric surface area.

2단 평행판 정전식 집진기에서의 입자하전 및 포집 (Particle Charging and Collection in Two-Stage, Parallel-Plate Electrostatic Precipitators)

  • 오명도;유경훈;이준식
    • 대한기계학회논문집
    • /
    • 제18권2호
    • /
    • pp.432-445
    • /
    • 1994
  • From a theoretical analysis point of view, the 2-stage precipitator is decomposed into two units: charging cell and collecting cell. Collection efficiency predictions of the two-stage parallel-plate electrostatic precipitator have been performed theoretically incorporating with the charging and the collecting cells. Particle trajectorise passing the charging cell have been modeled as a simple one. Particle charge distribution at the outlet of the charging cell is calculated through integration of the present unipolar combined charging rate along the entire particle trajectory, and average charge of particles at the outlet of the charging cell is obtained from the particle charge distribution. As for the collecting cell, the diminution of particle concentration along the longitudinal direction of the collecting cell is investigated considering the conventional Deutsch's theory and the laminar theory. One should note that the collection efficiency formula derived is based on monodisperse aerosols. It has been confirmed through the analysis that predictions of particle charge by applying White's unipolar diffusion charging theory overpredict actual cases in the continuum regime, while predictions by Fuch's unipolar diffusion charging theory indicate the reasonable result in the same regime. Theoretical predictions of collection efficiency are also compared with the available experimental results. Comparisons show that the experimental results are consistently located in the collection efficiency region bounded by the two limits, the Deutsch and the laminar collection efficiencies. Finally design parameters of the 2-stage electrostatic precipitator have been investigated systematically through the one-variable-at-a-time method in terms of collection efficiency. Applied voltages on the corona wire of the charging cell and the plate of the collecting cell, and the average air velocity have been selected as the design parameters.

전기집진기의 10 nm 급 초미세 나노입자의 하전 및 집진 특성 (Characteristics of Charging and Collection of 10-nm-Class Ultrafine Nanoparticles in an Electrostatic Precipitator)

  • 한방우;김학준;김용진;송동근;홍원석;신완호
    • 대한기계학회논문집B
    • /
    • 제35권10호
    • /
    • pp.1013-1018
    • /
    • 2011
  • 전기집진에서의 10 nm 급 초미세 나노입자의 하전 및 집진 특성을 파악하였고, 나노입자의 확산효과와 비교해 보았다. 나노입자의 하전율과 확산손실 효과의 지배력에 따라 전기집진기에서의 나노입자 집진효율이 결정되는 것을 확인할 수 있었다. 10nm 급 영역에서는 입자 크기가 작아질수록 지속적으로 집진효율이 감소하였다. 10 nm 이하의 영역에서는 나노입자의 부분적 하전효과가 전기집진기 내의 확산 손실 효과보다 지배적인 것을 알 수 있었다. 10 nm 이하의 나노입자에 대하여 집진효율 실험 결과가 단극 확산 하전 이론을 적용한 입자하전율 계산 결과와도 잘 일치하였다.

모멘트법을 이용한 AC 전기장 내의 단극성 입자의 전기응집 해석 (Analysis of Electrical Coagulation of Unipolar Charged Particles in an Alternating Electric Using Moment Method)

  • 지준호;황정호
    • 대한기계학회논문집B
    • /
    • 제25권1호
    • /
    • pp.9-17
    • /
    • 2001
  • A numerical study has been carried out on the evolution of the particle size distribution for unipolar charged particles that experience coagulation in an alternating electric field. The collision frequency function of charged particles was analytically derived. The log-normal size distribution function is utilized for representing a poly-disperse size distribution and the moments of the particle size distribution are used to solve the general dynamic equation considering only AC electric force effect. The results are compared with the effects of brownian coagulation.

단극하전을 이용한 나노입자 응집성장 제어 (Aggregation of Nanoparticles Using a Unipolar Charging Technique)

  • 박형호;김상수;장혁상
    • 대한기계학회논문집B
    • /
    • 제27권1호
    • /
    • pp.46-53
    • /
    • 2003
  • Effects of electric force on the morphology and growth of aggregates were studied experimentally. Nano-sized NaCl particles were supplied to a flame to perform the unipolar charging state. This electric precursor did not modify a temperature profile of the flame. The morphology of aggregates was measured by TEM image processing technique and the light scattering technique. In the unipolar charged state, the fractal dimension of aggregates was smaller than that of' the electrically neutral state. This result was in good agreement with our previous numerical simulations.

단극하전 나노입자의 응집성장 과정에서 입자의 전기전도도의 효과에 대한 연구 (Effects of the Particle Electric Conductivity on the Aggregation of Unipolar Charged Nanoparticles)

  • 박형호;김상수;장혁상
    • 대한기계학회논문집B
    • /
    • 제27권2호
    • /
    • pp.173-180
    • /
    • 2003
  • Effects of the electric conductivity of particles were studied for the aggregation process of charged particles with a Brownian dynamic simulation in the free molecular regime. A periodic boundary condition was used for the calculation of the aggregation process in each cell with 500 primary particles of 16 nm in diameter. We considered two extreme cases, a perfect conductor and a perfect nonconductor. The electrostatic force on a particle in the simulation cell was considered as a sum of electrostatic forces from other particles in the original cell and its replicate cells. We assumed that aggregates were only charged with pre-charged primary particles. The morphological shape of aggregates was described in terms of the fractal dimension. The fractal dimension for the uncharged aggregate was D$_{f}$= 1.761. However, the fractal dimension decreased from 1.694 to 1.360 for the case of the perfect conductor, and from 1.610 to 1.476 for the case of the perfect nonconductor, with the increase of the average number of charges on the primary particle from 0.2 to 0.3. These values were smaller than that of the centered charge case.e.