• Title/Summary/Keyword: 단계추출

Search Result 2,681, Processing Time 0.028 seconds

Design and Implementation of Minutiac Extract Minimize (최소화 알고리즘 기반의 지문 인식 시스템의 설계 및 구현)

  • 이호현;조범준
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2003.11a
    • /
    • pp.81-85
    • /
    • 2003
  • 본 논문에서는 기존 지문 인식 시스템에서 사용하는 특이점 추출 알고리즘과 매칭 알고리즘을 개선한 알고리즘들을 설계하고 구현함 으로서 새로운 지문 인식 시스템 개발에 목표를 두었다. 현재, 이진화된 지문 이미지를 표현하는 자료구조인 Union and Division을 고안하였고, Union and Division에 기반한 특이점 추출 알고리즘을 설계 및 구현하였다. 또한 특이점 추출에서의 과다한 추출 단계로 인하여 발생되는 문제점들을 줄이기 위하여 기존의 6 단계인 특이점 추출 과정을 개선하여 3단계로 줄이면서도 정확성을 높이는 특이점 추출 알고리즘을 적용하였다.

  • PDF

Face Segmentation Using Mosaic (모자이크를 이용한 얼굴 영역의 추출)

  • 이승훈;이필규
    • Proceedings of the Korea Database Society Conference
    • /
    • 1995.12a
    • /
    • pp.197-202
    • /
    • 1995
  • 본 논문에서는 조명, 얼굴 개수 및 얼굴의 크기에 제한 받지 않고 복잡한 배경에서 얼굴 영역을 추출하는 알고리즘을 제안한다. 이 알고리즘은 3단계로 구성된다. 첫번째 단계는 입력 영상의 평균 그레이값을 계산하고 그 값이 임계치보다 작다면 히스토그램 균일화 작업을 수행한다. 두번째 단계에서는 입력 영상의 모자이크 이미지를 만들고 이 이미지에 대해 확장된 quartet을 만들고 실험을 통해 얻어진 규칙을 적용하여 대략적으로 얼굴의 후보 영역들을 추출한다. 이 작업은 모자이크 이미지를 구성하는 셀의 크기를 변화시킬 때마다 적용한다. 세번째 단계에서는 추출된 얼굴 후보 영역에 대해 Octet을 만들고 이 octet에 규칙을 적용하여 후보 영역에 대한 검증 작업을 수행한다. 세번째 과정에서 만들어진 모자이크 이미지는 두 번째 과정에서 얻어진 이미지보다 더 세밀하게 얼굴의 특징들을 표현하고 검증한다.

  • PDF

Vehicle detection for Traffic Surveliiance (교통 감시를 위한 자동차 검출)

  • 김종배;이창우;박민호;김항준
    • Proceedings of the Korea Institute of Convergence Signal Processing
    • /
    • 2000.12a
    • /
    • pp.157-160
    • /
    • 2000
  • 본 논문에서는 교통 감시 시스템의 필수 단계중에 하나인 실시간 자동차 검출 방법을 제안한다. 제안한 방법은 후보 영역 추출 단계와 자동차 인식 단계로 이루어진다. 첫 번째 단계에서는 연속된 두 프레임간의 차영상 분석 방법을 기반으로 하여 움직임이 있는 후보 영역을 추출한다. 두 번째 단계에서는 추출된 후보 영역에 자동차가 포함되어 있는지를 판별하기 위해 웨이블릿 변환 계수들을 입력으로 하는 신경망을 사용한다. 일반 도로에서 획득한 230대의 자동차가 포함된 동영상을 실험한 결과, 자동차 검출율은 97.8%, 프레임당 처리 시간은 0.12ms이다. 본 논문에서 제안한 실시간 자동차 검출 방법은 교통 감시 시스템에 유용하게 적용될 수 있다.

  • PDF

Automatic Segmentation of the Interest Organ Region in CT Images Using Region Growing (CT 영상에서 Region Growing 기법을 이용한 관심 장기 영역의 자동 추출)

  • Bae, Ho-Young;Lee, Wu-Ju;Lee, Bae-Ho
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2006.10b
    • /
    • pp.526-530
    • /
    • 2006
  • 논문은 CT영상에서 영역 확장 기법을 이용하여 인간의 장기 중 뇌와 간을 자동으로 추출할 수 있는 방법을 제안한다. 이는 뇌와 간이 CT영상에서 비교적 넓은 영역을 차지하고 있다는 사실에 기인하였으며, CT영상에서 특정 장기 영역을 추출하기 위해서 크게 초기 탐색 영역 결정 단계와 최종 장기 영역 단계로 나누어진다. 초기 탐색 영역은 CT영상 내에서 추출하고자 하는 장기 영역과 관계없는 부분을 제거하고 특정 장기 영역만을 남겨 관심 장기 영역의 검출률을 높이는 작업이다. 본 논문에서는 CT영상에서 비교적 높은 Gray Level을 가지고 있는 뼈영역인 두개골과 척추의 위치를 기반으로 하여 초기 탐색 영역을 결정하는 방법을 사용하였다. 특정 장기 영역의 추출은 ATID(Automatic Threshold Intensity Decision)를 이용한 이진화 단계, 모폴로지의 Opening 기법을 이용한 잡음제거 단계, Region Growing 기법을 이용한 특정 영역 추출 단계를 이용하는 과정을 거친다. 본 논문에서는 Region Growing 기법을 거친 다음 각각의 그룹 중에서 크기가 가장 큰 부분을 최종 특정 장기 영역으로 결정하였다. 본 논문에서 제안한 알고리즘은 국립전남대학교 부속병원에서 수집된 각각 뇌영상 100장과 간영상 100장을 사용하여 실험하였고, 제안된 알고리즘을 통해 관심 장기 영역을 추출했을 경우 약 91%이상의 높은 추출률을 보였다.

  • PDF

Gray scale image histogram using the horizontal edge information search (그레이스케일 히스토그램을 이용한 에지의 수평 정보획득 영상검색)

  • Jung, Il-Hoe;Park, Jong-An
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.05a
    • /
    • pp.151-154
    • /
    • 2008
  • In this paper, this program which is Retrieval System using Image Gray-scale histogram and Edge features is used to reduce the errors incurred by inputting methods which are used in a current Retrieval System. The Retrieval Algorithm is proceeding with several steps which are extracting features of images quality, extracting edge features and refining images, analysing extracted features, retaining important information from analyzed features, retrieving retained information from database, extracting and comparing among images from retrieved database. The proposed Retrieval System is used for a fast retrieval with accuracy and it is confirmed through simulations.

  • PDF

Three Step Face Region Detection Using Wavelet Packet Analysis (Wavelet Packet Analysis를 이용한 3단계 얼굴 영역 추출)

  • 안미선;송호근
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2001.10b
    • /
    • pp.370-372
    • /
    • 2001
  • 본 논문에서는 컬러 정지 영상을 대상으로 상반신 인물 영상이 입력되었을 때, 얼굴 영역을 추출하고 검증하는 방법을 제안한다. 본 논문의 얼굴 추출과정은 1단계로 영상 내 피부색 영역을 추출한 다음, 후보 영역들에 대한 공간적 제한조건을 이용하여 1차 얼굴 후보 영역을 결정한다. 2단계에서는 얼굴 구성 요소 중 가장 두드러진 특징으로서 눈 영역을 탐색하고, 눈 영역을 기준으로 한국인의 얼굴에 대한 구조적 통계값을 적용한다. 이로서 얼굴 포함 최소 사각형 후보 영역을 결정한다. 마지막 3단계에서는 영상 내 색상 정보와 공간 정보 그리고 구조적 통계치로부터 결정된 얼굴 후보 영역에 대하여 얼굴 영역의 텍스춰(texture)를 Wavelet Packet Analysis를 이용해 조사함으로써 얼굴 영역을 확정하게 된다. 일반적으로 2단계에서 대부분의 얼굴 영역이 결정되지만 3단계에서 얼굴 내 텍스춰 정보를 활용하면 보다 적절한 얼굴 포함 사각형의 범위를 결정할 수 있었다.

  • PDF

Content-based MPEG-4 Object Extraction (내용기반의 MPEG-4 객체 추출 연구)

  • 권기호;최석림
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 1999.06b
    • /
    • pp.115-120
    • /
    • 1999
  • 본 논문에서는 연속적인 입력화상에서 움직임을 나타내는 객체(Object)를 적은 연산량을 사용하여 추출해 내는 알고리즘을 소개한다. 본 알고리즘은 두 가지 단계로 이루어진다. 첫번째 단계로, 이전의 영상과 현재의 영상을 비교하여 움직임의 변화를 보이는 영역을 찾는다. 이 단계에서는 영상을 비교하여 움직임을 추출하기 위하여 창조영상과 현재의 영상, 그리고 영상의 데이터로서 edge정보를 사용한다. 두 번째 단계에서는, 첫번째 단계에서 움직임으로 판단된 Object mask(변화를 가지는 영역)를 가지고 background 제거 및 Object의 정확한 shape을 만들기 위한 post-processing과정을 가지게 된다. 이 두 단계를 거친 후 입력영상에서 background를 떼어낸 최종적인 Object의 shape정보가 추출되게 된다. 이 알고리즘은 object를 기반으로 부호화함으로써 데이터의 압축률을 극대화 시키는 MPEG-4뿐만 아니라, video database, 무선 통신등과 같은 다양한 범위의 application에 적절하게 사용될 수 있을 것이다.

  • PDF

An Object Extraction Technique for Object Reusability Improvement based on Legacy System Interface (객체 재사용성 향상을 위한 레거시 시스템 인터페이스 기반 객체추출 기법)

  • 이창목;유철중;장옥배
    • Journal of KIISE:Software and Applications
    • /
    • v.31 no.11
    • /
    • pp.1455-1473
    • /
    • 2004
  • This paper suggests a technique, TELOR(Technique of Object Extraction Based on Legacy System Interface for Improvement of Object Reusability) for reuse and reengineering by analyzing the Legacy System interface to distill the meaningful information from them and disassemble them into object units which are to be integrated into the next generation systems. The TELOR method consists of a 4 steps procedure: 1) the interface use case analysis step, 2) the interface object dividing step, 3) the object structure modeling step, and 4) the object model integration step. In step 1, the interface structure and information about the interaction between the user and the Legacy System are obtained. In step 2, the interface information is divided into semantic fields. In step 3, studies and models the structural and collaborative relationship among interface objects. Finally, in step 4, object model integration step, integrates the models and improves the integrated model at a higher level. The objects integration model created through TELOR provides a more efficient understanding of the Legacy System and how to apply it to next generation systems.

Abnormal Region Extraction of Brain MR Images Using Mean of White-grey Matter Thickness (회백질 두께 평균치를 이용한 뇌 MR영상의 비정상 영역 추출)

  • 조경은;채정숙;조형제
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2001.10b
    • /
    • pp.466-468
    • /
    • 2001
  • 의료 영상 처리 기술은 질병의 진단 및 치료를 위한 계획이나 방법을 결정하는데 있어 매우 중요한 역할을 하고 있으며 의료 영상 시스템과 같은 활용 분야에서는 질병이 있는 환자의 자동 진단을 위한 연구도 활발하게 이루어지고 있다. 여기서는 뇌 MR영상에서의 질병을 자동 진단할 수 있는 방법에 관한 연구를 한다. 뇌 MR영상에서의 질병 진단을 위한 단계로서 필수적으로 이루어져야 하는 단계가 비정상 영역의 추출 단계이다. 이 논문에서는 뇌의 질병 진단에 사용할 수 있는 자료를 제공하기 위한 전처리 단계로서 질병이 있는 환자의 뇌 영상에서 비정상적인 영역 추출 방법을 제안한다. 일반적으로 비정상적인 영역의 명암간 분포는 회백질 영역의 분포와 유사하나 두께 차이로서 구분이 가능하다. 여기서는 이 정보를 활용하여 정상인의 뇌영상에 대해서 회백질의 평균 두께 분포를 구하여 테스트로 입력되어지는 영상에서 회백질의 평균 두께 이상의 영역만을 남김으로서 질병이 있는 환자의 뇌 영상에서 비정상적인 영역을 추출할 수 있음을 보인다. 또한 추출되어진 비정상 영역에 대해서 진단에 필요한 인자를 자동으로 측정하였고 뇌경색, 뇌종양 환자를 포함한 63명의 뇌 MR 영상 시리즈에 대해서 실험하여 비교적 정확한 추출결과를 유도할 수 있었음을 확인하였다.

  • PDF

Character Region Extraction Based on Texture and Depth Features (질감과 깊이 특징 기반의 문자영역 추출)

  • Jang, Seok-Woo;Park, Young-Jae;Huh, Moon-Haeng
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.2
    • /
    • pp.885-892
    • /
    • 2013
  • In this paper, we propose a method of effectively segmenting character regions by using texture and depth features in 3D stereoscopic images. The suggested method is mainly composed of four steps. The candidate character region extraction step extracts candidate character regions by using texture features. The character region localization step obtains only the string regions in the candidate character regions. The character/background separation step separates characters from background in the localized character areas. The verification step verifies if the candidate regions are real characters or not. In experimental results, we show that the proposed method can extract character regions from input images more accurately compared to other existing methods.