• Title/Summary/Keyword: 단계적 영역 병합

Search Result 32, Processing Time 0.029 seconds

Leukocyte Segmentation using Saliency Map and Stepwise Region-merging (중요도 맵과 단계적 영역병합을 이용한 백혈구 분할)

  • Gim, Ja-Won;Ko, Byoung-Chul;Nam, Jae-Yeal
    • The KIPS Transactions:PartB
    • /
    • v.17B no.3
    • /
    • pp.239-248
    • /
    • 2010
  • Leukocyte in blood smear image provides significant information to doctors for diagnosis of patient health status. Therefore, it is necessary step to separate leukocyte from blood smear image among various blood cells for early disease prediction. In this paper, we present a saliency map and stepwise region merging based leukocyte segmentation method. Since leukocyte region has salient color and texture, we create a saliency map using these feature map. Saliency map is used for sub-image separation. Then, clustering is performed on each sub-image using mean-shift. After mean-shift is applied, stepwise region-merging is applied to particle clusters to obtain final leukocyte nucleus. The experimental results show that our system can indeed improve segmentation performance compared to previous researches with average accuracy rate of 71%.

Hierarchical Image Segmentation Based on HVS Characteristic for Region-Based Very Low Bit Rate Coding (영역기반 초저속 부호화를 위한 인간 시각 체계에 기반한 계층적 영상 분할)

  • Song, Kun-Woen;Park, Young-Sik;Han, Kyu-Phil;Nam, Jae-Yeal;Ha, Yeong-Ho
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.36S no.1
    • /
    • pp.70-80
    • /
    • 1999
  • In this paper, a new hierarchical image segmentation algorithm based on human visual system(HVS) characteristic is proposed which can efficiently reduce and control transmission information quantity without the degradation of the subjective and objective image quality. It consists of image segmentation based on mathematical morphology and region merging considering HVS characteristic for the pairs of two adjacent regions at each level of the hierarchy. Image segmentation is composed of 3-level hierarchical structure. In the region merging structure of each level, we extract the pairs of two adjacent regions which human vision can't discriminate, and then merge them. The proposed region merging method extracts pairs of two neighbor regions to be merged and performs region merging according to merging priority based on HVS characteristics. The merging priority for each adjacent pair is determined by the proposed merging priority function(MPF). First of all, the highest priority pair is merged. The information control factor is used to regulate the transmission information at each level. The proposed segmentation algorithm can efficiently improve bottleneck problem caused by excessive contour information at region-based very low bit rate coding. And it shows that it is more flexible structure than that of conventional method. In experimental results, though PSNR and the subjective image quality by the proposed algorithm is similar to that of conventional method, the contour information quantity to be transmitted is reduced considerably. Therefore it is an efficient image segmentation algorithm for region-based very low bit rate coding.

  • PDF

An Efficient Morphological Segmentation Using a Connected Operator Based on Size and Contrast (크기 및 대조 기반의 Connected Operator를 이용한 효과적인 수리형태학적 영상분할)

  • Kim, Tae-Hyeon;Moon, Young-Shik
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.42 no.6
    • /
    • pp.33-42
    • /
    • 2005
  • In this paper, we propose an efficient segmentation algerian using morphological grayscale reconstruction for region-based coding. Each segmentation stage consists of simplification, marker extraction and decision. The simplification removes unnecessary components to make an easier segmentation. The marker extraction finds the flat zones which are the seed points from the simplified image. The decision is to locate the contours of regions detected by the marker extraction. For the simplification, we use a new connected operator based on the size and contrast. In the marker extraction stage, the regions reconstructed to original values we excluded from the candidate marker. For the other regions, the regions which are larger than structuring elements or have higher contrast than a threshold value are selected as markers. For the initial segmentation, the conventional hierarchical watershed algorithm and the extracted markers are used. Finally in the region merging stage, we propose an efficient region merging algorithm which preserves a high quality in terms of the number of regions. At the same time, the pairs which have higher contrast than a threshold are excluded from the region merging stage. Experimental results show that the proposed marker extraction method produces a small number of markers, while maintaining high quality and that the proposed region merging algorithm achieves a good performance in terms of the image quality and the number of regions.

Automatic Classification Algorithm for Raw Materials using Mean Shift Clustering and Stepwise Region Merging in Color (컬러 영상에서 평균 이동 클러스터링과 단계별 영역 병합을 이용한 자동 원료 분류 알고리즘)

  • Kim, SangJun;Kwak, JoonYoung;Ko, ByoungChul
    • Journal of Broadcast Engineering
    • /
    • v.21 no.3
    • /
    • pp.425-435
    • /
    • 2016
  • In this paper, we propose a classification model by analyzing raw material images recorded using a color CCD camera to automatically classify good and defective agricultural products such as rice, coffee, and green tea, and raw materials. The current classifying agricultural products mainly depends on visual selection by skilled laborers. However, classification ability may drop owing to repeated labor for a long period of time. To resolve the problems of existing human dependant commercial products, we propose a vision based automatic raw material classification combining mean shift clustering and stepwise region merging algorithm. In this paper, the image is divided into N cluster regions by applying the mean-shift clustering algorithm to the foreground map image. Second, the representative regions among the N cluster regions are selected and stepwise region-merging method is applied to integrate similar cluster regions by comparing both color and positional proximity to neighboring regions. The merged raw material objects thereby are expressed in a 2D color distribution of RG, GB, and BR. Third, a threshold is used to detect good and defective products based on color distribution ellipse for merged material objects. From the results of carrying out an experiment with diverse raw material images using the proposed method, less artificial manipulation by the user is required compared to existing clustering and commercial methods, and classification accuracy on raw materials is improved.

Image Segmentation by Cascaded Superpixel Merging with Privileged Information (단계적 슈퍼픽셀 병합을 통한 이미지 분할 방법에서 특권정보의 활용 방안)

  • Park, Yongjin
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.9
    • /
    • pp.1049-1059
    • /
    • 2019
  • We propose a learning-based image segmentation algorithm. Starting from super-pixels, our method learns the probability of merging two regions based on the ground truth made by humans. The learned information is used in determining whether the two regions should be merged or not in a segmentation stage. Unlike exiting learning-based algorithms, we use both local and object information. The local information represents features computed from super-pixels and the object information represent high level information available only in the learning process. The object information is considered as privileged information, and we can use a framework that utilize the privileged information such as SVM+. In experiments on the Berkeley Segmentation Dataset and Benchmark (BSDS 500) and PASCAL Visual Object Classes Challenge (VOC 2012) data set, out model exhibited the best performance with a relatively small training data set and also showed competitive results with a sufficiently large training data set.

Adaptive Segmentation Approach to Extraction of Road and Sky Regions (도로와 하늘 영역 추출을 위한 적응적 분할 방법)

  • Park, Kyoung-Hwan;Nam, Kwang-Woo;Rhee, Yang-Won;Lee, Chang-Woo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.16 no.7
    • /
    • pp.105-115
    • /
    • 2011
  • In Vision-based Intelligent Transportation System(ITS) the segmentation of road region is a very basic functionality. Accordingly, in this paper, we propose a region segmentation method using adaptive pattern extraction technique to segment road regions and sky regions from original images. The proposed method consists of three steps; firstly we perform the initial segmentation using Mean Shift algorithm, the second step is the candidate region selection based on a static-pattern matching technique and the third is the region growing step based on a dynamic-pattern matching technique. The proposed method is able to get more reliable results than the classic region segmentation methods which are based on existing split and merge strategy. The reason for the better results is because we use adaptive patterns extracted from neighboring regions of the current segmented regions to measure the region homogeneity. To evaluate advantages of the proposed method, we compared our method with the classical pattern matching method using static-patterns. In the experiments, the proposed method was proved that the better performance of 8.12% was achieved when we used adaptive patterns instead of static-patterns. We expect that the proposed method can segment road and sky areas in the various road condition in stable, and take an important role in the vision-based ITS applications.

Color Image Segmentation Using Adaptive Quantization and Sequential Region-Merging Method (적응적 양자화와 순차적 병합 기법을 사용한 컬러 영상 분할)

  • Kwak, Nae-Joung;Kim, Young-Gil;Kwon, Dong-Jin;Ahn, Jae-Hyeong
    • Journal of Korea Multimedia Society
    • /
    • v.8 no.4
    • /
    • pp.473-481
    • /
    • 2005
  • In this paper, we propose an image segmentation method preserving object's boundaries by using the number of quantized colors and merging regions using adaptive threshold values. First of all, the proposed method quantizes an original image by a vector quantization and the number of quantized colors is determined differently using PSNR each image. We obtain initial regions from the quantized image, merge initial regions in CIE Lab color space and RGB color space step by step and segment the image into semantic regions. In each merging step, we use color distance between adjacent regions as similarity-measure. Threshold values for region-merging are determined adaptively according to the global mean of the color difference between the original image and its split-regions and the mean of those variations. Also, if the segmented image of RGB color space doesn't split into semantic objects, we merge the image again in the CIE Lab color space as post-processing. Whether the post-processing is done is determined by using the color distance between initial regions of the image and the segmented image of RGB color space. Experiment results show that the proposed method splits an original image into main objects and boundaries of the segmented image are preserved. Also, the proposed method provides better results for objective measure than the conventional method.

  • PDF

Face Region Segmentation using Watershed Algorithm And Object Grouping (Watershed Algorithm 과 Object Grouping 을 이용한 얼굴영역분할)

  • Hwang, Hoon;Choi, Young-Kwan;Choi, Chul;Lee, Jeong-A;Park, Chang-Choon
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2003.11a
    • /
    • pp.587-590
    • /
    • 2003
  • 얼굴영역을 분할하기 위해서 Watershed Algorithm 와 Object Grouping 을 이용한 얼굴영역 분할기법을 제안한다. 영상분할에 단점은 단일 알고리즘으로 영역분할이 어렵고, 또한 복잡한 영상에서 정확한 영역을 분할하기가 어렵다는 것이다. 그래서 본 논문에서는 Watershed Segmentation 기법과 Grouping 작업을 통한 병합, 그리고 색상의 선형회귀분석을 이용한 분석법을 적용하여 분할하고자 한다. 얼굴영역 분할방법을 전처리 과정과 영역 병합 그리고 얼굴 부분을 추출하는 3 단계의 과정으로 나누고, 전처리 과정에서는 수리형태학적(Mophological) 연산자를 이용한 영상 분할기법을 이용하여 분할한 후 얼굴 후보 영역을 검출, 영역병합과정에서 기존의 학습데이터와의 유사도를 측정, 얼굴객체추출 조건에 맞지 않는 객체들을 모두 제거함으로써, 정확한 얼굴부분을 분할해 낸다. 실험결과 제안한 방법을 통해 비교적 정확한 얼굴영역을 분할 할 수 있었다.

  • PDF

Parallel Spatial Join using Vector Quadtrees (벡터 사분트리를 이용한 병렬 공간 조인)

  • Kim, Jin-Deok;Seong, Won-Mo;Hong, Bong-Hui
    • Journal of KIISE:Software and Applications
    • /
    • v.26 no.1
    • /
    • pp.25-39
    • /
    • 1999
  • 지리 정보 시스템에서 공간 분석을 위해 사용되는 중요한 연산인 공간 조인은 대상이 되는 공간 객체의 수가 증가함에 따라서 연산 시간이 지수적으로 증가하는 특징을 가지고 있다. 그러므로 다량의 공간 데이터에 대해서 공간 연산시간을 줄이기 위한 병렬처리가 필요하다. 이 논문에서는 비겹침 정규분할 방식의 사분트리를 이용한 공간 조인 알고리즘을 제시하고 MIMD 구조 및 공유 디스크 방식의 병렬 처리시스템에 적용하여 성능을 평가한다. 사분트리를 이용한 공간조인 방법으로서 중복 표현된 공간객체를 줄이기 위한 사분면(quadrant)의 병합 방법,영역 제한을 통해 연산 대상 객체를 줄이기 위한 사분면의 분할 방법, 그리고 병합 및 분할 방법을 혼용하여 공간 조인 연산의 숫자를 최소화하는 혼합 방법을 제시한다. 실험 평가에서는 각 방법들을 병렬 처리 시스템에 적용하여 여과단계 및 정제단계에서의 연산량과 수행 시간을 통해 성능을 비교 평가한다. 실험결과, 여과 단계에서는 분할 방법이 가장 우수했지만, 정제 단계에서는 병합 방법이 가장 우수했다. 따라서 전체적인 고려할 때 두 방법의 장점을 수용한 혼합 방법이 가장 우수한 성능을 나타냈다.

Rate-distortion based image segmentation using recursive merging (반복적 병합을 이용한 율왜곡 기반 영상 분할)

  • 전성철;임채환;김남철
    • Journal of Broadcast Engineering
    • /
    • v.4 no.1
    • /
    • pp.44-58
    • /
    • 1999
  • In this paper, a rate-distortion based image segmentation algorithm is presented using a recursive merging with region adjacency graph (RAG). In the method, the dissimilarity between a pair of adjacent regions is represented as a Lagrangian cost function considered in rate-distortion sense. Lagrangian multiplier is estimated in each merging step, a pair of adjacent regions whose cost is minimal is searched and then the pair of regions are merged into a new region. The merging step is recursively performed until some termination criterion is reached. The proposed method thus is suitable for region-based coding or segmented-based coding. Experiment results for 256x256 Lena show that segmented-based coding using the proposed method yields PSNR improvement of about 2.5 - 3.5 dB. 0.8 -1.0 dB. 0.3 -0.6 dB over mean-difference-based method. distortion-based method, and JPEG, respectively.

  • PDF