• Title/Summary/Keyword: 단결정

Search Result 1,485, Processing Time 0.032 seconds

Formation of lotus surface structure for high efficiency silicon solar cell (고효율 실리콘 태양전지를 위한 lotus surface 구조의 형성)

  • Jung, Hyun-Chul;Paek, Yeong-Kyeun;Kim, Hyo-Han;Eum, Jung-Hyun;Choi, Kyoon;Kim, Hyung-Tae;Chang, Hyo-Sik
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.20 no.1
    • /
    • pp.7-11
    • /
    • 2010
  • The reduction of optical losses in mono-crystalline silicon solar cell by surface texturing is a critical step to improve the overall cell efficiency. In this study, we have changed the sub-micrometer structure on the micrometer pyramidal structure by 2-step texturing. The Ag particles were coated on the micrometer pyramid surface in $AgNO_3$ solution, and then the etching with hydrogen fluoride and hydrogen peroxide created even smaller nano-pyramids in these pyramids. As a result, we observed that the changes of size and thickness of nano structure on pyramidal surface were determined by $AgNO_3$ concentration and etching time. Using 2-step texturing, the surface of wafers is etched to resemble the rough surface of a lotus leaf. Lotus surface can reduce average reflectance from 10% to below 3%. This reflectance is less than conventional textured wafer including anti-reflection coating.

Numerical simulation optimization for solution growth of silicon carbide (SiC 용액 성장을 위한 수치 시뮬레이션의 최적화)

  • Kim, Young-Gon;Choi, Su-Hun;Lee, Chae-Yung;Choi, Jeung-Min;Park, Mi-Seon;Jang, Yeon-Suk;Jeong, Seong-Min;Lee, Myung-Hyun;Kim, Younghee;Seo, Won-Seon;Lee, Won-Jae
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.27 no.3
    • /
    • pp.130-134
    • /
    • 2017
  • In this study, numerical simulation was performed to focus on optimized process condition for obtaining a long-term growth and high quality SiC crystal. It could be optimized by considering the change of fluid and a carbon flow in the Si melt added with 40 % Cr. The Crystal Growth Simulator ($CGSim^{TM}$, STR Group Ltd.) was used as a numerical simulation. It was confirmed that many parameters such as temperature, rotation speed of seed crystal and crucible, and seed position during the crystal growth step had a strong influence on the speed and direction of solution flow for uniform temperature gradient and stable crystal growth. The optimized process condition for the solution growth of SiC crystal was successfully exhibited by adjusting various process parameters in the numerical simulation, which would be helpful for real crystal growth.

The Structures of Alditol Acetates (Alditol Acetates의 분자구조)

  • Park, Yeong Ja;Park, Myeong Hui;Sin, Jeong Mi
    • Journal of the Korean Chemical Society
    • /
    • v.34 no.6
    • /
    • pp.517-526
    • /
    • 1990
  • The crystal structures of two alditol acetates, D-glucitol hexaacetate and xylitol pentaacetate, have been determined by diffraction methods with Mo-K$\alpha$radiation, using direct methods for phase determinations. The crystal data are: for D-glucitol hexaacetate, P2$_1$, with a = 10.275 (2), b = 8.363 (1), c = 12.560 (5) $\AA;\beta$ = 95.97 $(2)^{\circ}$, Z = 2; for xylitol pentaacetate, P2$_1$/C with a = 18.126 (1), b = 11.422 (2), c = 8.649 (1) $\AA$, $\beta = 95.03 (1)^{\circ}$, Z = 4. Both molecules have extended zigzag carbon chain conformations which differ from previous studies of the structures of D-glucitol and xylitol and also differ from NMR studies on alditol acetates. The bond lengths and angles are normal, with mean values over both structures of C($sp^3)-C(sp^3): 1.514 (10),\; C(sp^3)-O: 1.444 (6),\; C(sp^2)-O: 1.347 (9),\; C(sp^2)=O: 1.197 (6),\; C(sp^2)-C(sp^3): 1.479(9){\AA},\; C(sp^3)-C(sp^3)-C(sp^3): 114.6 (17),\; O-C(sp^3)-C(sp^3): 109.4 (23),\; C(sp^2)-O-C(sp^3): 117.4 (6),\; O=C(sp^2)-O: 122.6 (6),\; C(sp^3)-C(sp^2)-O: 111.8 (7),\; C(sp^3)-C(sp^2)=O: 125.5 (4)^{\circ}$. The atoms of acetate groups are in coplanar. There are no particularly short intermolecular contacts and the molecules are held together by van der Waals force only.

  • PDF

Two Crystal Structures of Dehydrated $Ca^{2+}-\;and\;Tl^+-$Exchanged Zeolite A, $Ca_xTl_{12-2x}-A$ (x = 1.4 and 5.6) (칼슘 및 탈륨 이온으로 치환된 제올라이트 A, $Ca_xTl_{12-2x}-A$ (x = 1.4 및 5.6)를 탈수한 결정구조)

  • Kim Duk Soo;Song Seong Hwan;Kim, Yang
    • Journal of the Korean Chemical Society
    • /
    • v.37 no.1
    • /
    • pp.76-82
    • /
    • 1993
  • Two crystal structures of fully dehydrated Ca(II) and Tl(I) exchanged zeolite A, $Ca_{5.6}Tl_{0.8}-A (a = 12.242(2){\AA})\;and\;Ca_{1.4}Tl_{9.2}-A (a = 12.191(1){\AA})$, have been determined by single-crystal X-ray diffraction methods in the cubic space group Pm3m at 21(1)$^{\circ}C$. All crystals were ion exchanged in flowing streams of mixed $Ca(NO_3)_2\;and\;TINO_3$ aqueous solution with total concentration of 0.05M. All crystals were dehydrated at 360$^{\circ}C$ under $2{\times}10^{-6}\;torr$ for two days. The structures of the dehydrated $Ca_{5.6}Tl_{0.8}-A$ and $Ca_{1.4}Tl_{9.2}-A$ were refined to the final error indicies, $R_1$ = 0.072 and $R_2$ = 0.076 with 179 reflections for I > 3$\sigma$(I), and $R_1$ = 0.048 and $R_2$ = 0.043 with 226 reflections for I > 3$\sigma$(I), respectively. In each structure, Ca(II) ions are located on threefold axes associated with three 6-ring oxygens. $Ca^{2+}$ ions prefer to 6-ring sites and $Tl^+$ ions prefer to 8-ring sites when total number of exchanged cations per unit cell is more than 8.

  • PDF

Preparation of Nano Sized Indium Tin Oxide (ITO) Powder with Average Particle Size Below 30 nm from Waste ITO Target by Spray Pyrolysis Process (폐 ITO 타겟으로부터 분무열분해 공정에 의한 평균입도 30 nm 이하의 인듐-주석 산화물 분체 제조)

  • Kim, Donghee;Yu, Jaekeun
    • Resources Recycling
    • /
    • v.27 no.2
    • /
    • pp.24-31
    • /
    • 2018
  • In this study, waste ITO target is dissolved into hydrochloric acid to generate a complex indium-tin chloride solution. Nano sized ITO powder with an average particle size below 30 nm are generated from these raw material solutions by spray pyrolysis process. Also, in this study, thermodynamic equations for the formation of indium-tin oxide (ITO) are established. As the reaction temperature increased from $800^{\circ}C$ to $900^{\circ}C$, the proportion and size of the spherical droplet shape in which nano sized particles aggregated gradually decreased, and the surface structure gradually became densified. When the reaction temperature was $800^{\circ}C$, the average particle size of the generated powder was about 20 nm, and no significant sintering was observed. At a reaction temperature of $900^{\circ}C$, the split of the droplet was more severe than at $800^{\circ}C$, and the rate of maintenance of the initial atomized droplet shape decreased sharply. The average particle size of the powder formed was about 25 nm. The ITO particles were composed of single solid crystals, regardless of reaction temperature. XRD analysis showed that only the ITO phase was formed. Remarkably, the specific surface area decreased by about 30% as the reaction temperature increased from $800^{\circ}C$ to $900^{\circ}C$.

Crystal Structure of a Bromine Sorption Complex of Dehydrated Calcium and silver Exchanged Zeolite A (칼슘 및 은 이온으로 치환된 제올라이트 A를 탈수한 후 브롬을 흡착한 결정구조)

  • Bae, Myung-Nam;Kim, Un-Sik;Kim, Yang
    • Korean Journal of Crystallography
    • /
    • v.8 no.2
    • /
    • pp.127-131
    • /
    • 1997
  • The crystal structure of a bromine sorption complex of vacuum-dehydrated Ag+ and Ca2+ exchanged zeolite A(a=12,234(1) Å) has been determined by single-crystal X-ray diffraction methods in the cubic space group Pm3m. The crystal was prepared by flow method using exchange solution in which mole ratio of AgNo3 and Ca(NO3)2 was 1:150 with a total concentration of 0.05M. The crystal was dehydrated at 360℃ and 2 ×10-6 Torr for 2days, followed by exposure to 180 Torr of Br2 vapor for 20min. full-matrix least-squares refinements converged to the final error indices of R1=0.111 and R2=0.101 using 90 reflections for which I>3o(I). About 3.1 Ag+ ions and 4.45 Ca2+ ions lie on the two crystallographically nonequivalent three-fold axes associated with 6-ring oxygens. A total of six bromine molecules are sorbed per unit cell. Each bromine molecule approaches a framework oxide ions axially (Br-Br-O=171(2)', O-Br=3.25(6) Å; and Br-Br=2,61(8) Å by a charge-transfer interaction.

  • PDF

X-ray and Spectroscopy Studies of Mercury (II) and Silver (I) Complexes of α-Ketostabilized Phosphorus Ylides (α-케토안정화된 일리드화 인의 수은(II) 및 은(I) 착물에 대한 X-선 및 분광학적 연구)

  • Karami, K.;Buyukgungor, O.;Dalvand, H.
    • Journal of the Korean Chemical Society
    • /
    • v.55 no.1
    • /
    • pp.38-45
    • /
    • 2011
  • The complexation behavior of the $\alpha$-ketostabilized phosphorus ylides $Ph_3P$=CHC(O) $C_6H_4-X$ (X=Br, Ph) towards the transition metal ions mercury (II) and Silver (I) was investigated. The mercury(II) complex {$HgX_2$ [Y]} 2 ($Y_1$=4-bromo benzoyl methylene triphenyl phosphorane; X=Cl(1), Br(2), I(3), $Y_2$=4-phenyl benzoyl methylene triphenyl phosphorane; X=Cl(4), Br(5), I(6)) have been prepared from the reaction of $Y_1$ and $Y_2$ with $HgX_2$ (X=Cl, Br, I) respectively. Silver complexes [$Ag(Y_2)_2]$ X(X=$BF_4$(7), OTf(8)) of the $\alpha$-keto-stabilized phosphorus ylides ($Y_2$) were obtained by reacting this ylide with AgX (X=$BF_4$, OTf) in $Me_2CO$. The crystal structure of complexes (1) and (4) was discussed. These reactions led to binuclear complexes C-coordination of ylide and trans-like structure of complexes $[Y_1HgCl_2]_2$. $CHCl_3$ (1) and $[Y_2HgCl_2]_2$ (4) is demonstrated by single crystal X-ray analyses. Not only all of complexes have been studied by IR, $^1H$ and $^{31}P$ NMR spectroscopy, but also complexes 1-3 have been characterized by $^{13}$CNMR.

The Crystal Structure of an Iondine Sorption Complex of Dehydrated Calcium and Silver Exchanged Zeolite A ($Ag^+$이온과 $Ca^{2+}$이온으로 치환한 제올라이트 A를 탈수한 후 요오드를 흡착한 결정구조)

  • Bae, Myung-Nam;Kim, Yang;Kim, Un-Sik
    • Korean Journal of Crystallography
    • /
    • v.6 no.2
    • /
    • pp.118-124
    • /
    • 1995
  • The crystal structure of an iodine sorption complex of vacumm-dehydrated Ag+ and Ca2+ exchanged zeolite A(a=12.174(3)Å) has been determined at 21℃ by single-crystal X-ray diffraction techniques in the cubic space group Pm3m. The crystal was prepared by flow method for three days using exchange solution in solution in which mole ratio of AgNO3 and Ca(NO3)2 was 1:150 with total concentration of 0.05 M. The complex was prepared by dehydration at 360℃ and 2×10-6 Torr for 2 days, followed by exposure to about 14.3 Torr of iodine vaporat 80℃ for 24 hours. Full-matrix least-squares refinement converged to the final error indices of R1=0.082, R2=0.068 using 122 reflections for which I > 3σ(I). Two Ag+ ions, 1.1 Ag+ ions, and 4.45 Ca2+ ions per unit cell are located on three different three-fold axes associated with 6-ring oxygens. Two Ag+ ions per unit cell are in the large cavity, 1.399(4)Å from the (111) plane of three oxygens. Another 1.1 Ag+ ions are found at opposite sites. Six iodine molecules are sorbed per unit cell. Each I2 molecule approaches a framework oxide ion axially (O-I=3.43(2)Å, I-I=2.92Å, I-I-O;166.1(3)°), by a charge transfer complex interaction. Two Ag+ ions make a close approach to the iodine molecules (Ag-I ; 2.73(2)Å).

  • PDF

The Solvent-Independent Structure of 6-(2-pyridyl)-3, 5-hexadiyn-1-ol (6-(2-pyridyl)-3, 5-hexadiyn-1-ol의 용매 비의존 분자구조)

  • 서일환;이진호
    • Korean Journal of Crystallography
    • /
    • v.6 no.1
    • /
    • pp.36-42
    • /
    • 1995
  • Two types of single crystals of the title compound [6-(2-pyridyl)-3, 5-hexadiyn-ol, PyHxD] were obtained by solution of n-hexane/CH2C12 and n-hexane/Et2O, and their molecular conformations are proved identical in spite of different of space groups; C22H18N2O2 (I), Mr=343.70, Monoclinic, Pa, a=14.595(2), b=5.413(2), c=12.218(2)Å, β=96.86(1)°, V=958.3Å3, Z=2, Dx=1.19 Mgm-3, λ(MoKα)=0.71069Å, μ=0.072mm-1, F(000)=360.0, T=292K, R=0.104 for 756 unique observed reflections. An asymmetric unit contains a dimer connected by two N-H…O intermolecular hydrogen bonds. C11H9NO (II), Mr=171.85, Monoclinic, P21/a, a=14.611(2), b=5.423(6), c=12.191(2)Å, β=96.89(1)°, V=959.0Å3, Z=4, Dx=1.19 Mgm-3, λ(MoKα)=0.71069Å, μ=0.072mm-1, F(000)=360.0, T=293K, R=0.066 for 824 unique observed reflection. The structural asymmetric unit contains a molecule, but two N-H…O hydrogen bonds related by controsymmetry make the molecules form a dimer. In both structure, the dihedral angle between the planar pyridyl ring and the plane defined by C(10)-C(11)-O connected by linear diyne chain is approximately normal, and the molecules are stacked along b-axis with the unit repeat of b-axis.

  • PDF

The Study on development of a SAW SO$_2$ gas sensor (표면탄성파를 이용한 아황산 가스센서 개발에 관한 연구)

  • Lee, Young-Jin;Kim, Hak-Bong;Roh, Yong-Rae;Cho, Hyun-Min;Baik, Sung;,
    • The Journal of the Acoustical Society of Korea
    • /
    • v.16 no.2
    • /
    • pp.89-94
    • /
    • 1997
  • A new type SO$_2$ gas sensor with a particular inorganic thin film on SAW devices was developed. The sensor consisted of twin SAW oscillators of the center frequency of 54 MHz fabricated on the LiTaO$_3$ piezoelectric single crystal. One delay line of the sensor was coated with a CdS thin film that selectively adsorbed and desorbed SO$_2$, while the other was uncoated for use as a stable reference. Deposition of the CdS thin film was carried out by the spray pyrolysis method using an ultrasonic nozzle. The sensor could measure the concentration in air less than 0.25 parts per million of SO$_2$. Stability of the sensor turned out to be as good as less than 20ppm, recovery time after each measurement was as short as 5 minutes. Repeatability of the measurement was confirmed through so many reiterated experiments. Hence, the SAW sensor developed through this work showed promising performance as a microsensing tool of SO$_2$. Further work required to improve the performance of the sensor includes enhancement of the reactivity of the CdS thin film with SO$_2$ through appropriate dopant addition, an increase of the center frequency of the SAW device.

  • PDF