• Title/Summary/Keyword: 다항식 신경망 기법

Search Result 4, Processing Time 0.017 seconds

Generation of Pseudo Porosity Logs from Seismic Data Using a Polynomial Neural Network Method (다항식 신경망 기법을 이용한 탄성파 탐사 자료로부터의 유사공극률 검층자료 생성)

  • Choi, Jae-Won;Byun, Joong-Moo;Seol, Soon-Jee
    • Journal of the Korean earth science society
    • /
    • v.32 no.6
    • /
    • pp.665-673
    • /
    • 2011
  • In order to estimate the hydrocarbon reserves, the porosity of the reservoir must be determined. The porosity of the area without a well is generally calculated by extrapolating the porosity logs measured at wells. However, if not only well logs but also seismic data exist on the same site, the more accurate pseudo porosity log can be obtained through artificial neural network technique by extracting the relations between the seismic data and well logs at the site. In this study, we have developed a module which creates pseudo porosity logs by using the polynomial neural network method. In order to obtain more accurate pseudo porosity logs, we selected the seismic attributes which have high correlation values in the correlation analysis between the seismic attributes and the porosity logs. Through the training procedure between selected seismic attributes and well logs, our module produces the correlation weights which can be used to generate the pseudo porosity log in the well free area. To verify the reliability and the applicability of the developed module, we have applied the module to the field data acquired from F3 Block in the North Sea and compared the results to those from the probabilistic neural network method in a commercial program. We could confirm the reliability of our module because both results showed similar trend. Moreover, since the pseudo porosity logs from polynomial neural network method are closer to the true porosity logs at the wells than those from probabilistic method, we concluded that the polynomial neural network method is effective for the data sets with insufficient wells such as F3 Block in the North Sea.

A Study of Automatic Recognition on Target and Flame Based Gradient Vector Field Using Infrared Image (적외선 영상을 이용한 Gradient Vector Field 기반의 표적 및 화염 자동인식 연구)

  • Kim, Chun-Ho;Lee, Ju-Young
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.1
    • /
    • pp.63-73
    • /
    • 2021
  • This paper presents a algorithm for automatic target recognition robust to the influence of the flame in order to track the target by EOTS(Electro-Optical Targeting System) equipped on UAV(Unmanned Aerial Vehicle) when there is aerial target or marine target with flame at the same time. The proposed method converts infrared images of targets and flames into a gradient vector field, and applies each gradient magnitude to a polynomial curve fitting technique to extract polynomial coefficients, and learns them in a shallow neural network model to automatically recognize targets and flames. The performance of the proposed technique was confirmed by utilizing the various infrared image database of the target and flame. Using this algorithm, it can be applied to areas where collision avoidance, forest fire detection, automatic detection and recognition of targets in the air and sea during automatic flight of unmanned aircraft.

Load Modeling Method Based on Radial Basis Function Networks Considering of Hormonic components (고조파를 고려한 방사기저함수 네트워크 기반의 부하모델링 기법)

  • Ji, Pyeong-Shik;Lee, Dae-Jong;Lee, Jong-Pil;Lim, Jae-Yoon
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.22 no.4
    • /
    • pp.46-53
    • /
    • 2008
  • In this study, we developed RBFN(Radial Basis Function Networks) based load modeling method with harmonic components. The developed method considers harmonic information as well as fundamental frequency and voltage considered as essential factors in conventional method. Thus, the reposed method makes it possible to effectively estimate load characteristics in power lines with harmonics. RBFN has some advantage such as simple structure and rapid computation ability compared with multi-layer perceptorn which is extensively applied for load modeling. To verify the effectiveness, the proposed method has been intensively tested with various dataset acquired under the different frequency and voltage and compared it with conventional methods such as polynomial method, MLPN and RBFN with no harmonic components.

Forecasting High-Level Ozone Concentration with Fuzzy Clustering (퍼지 클러스터링 이용한 고농도오존예측)

  • 김재용;김성신;왕보현
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.11 no.4
    • /
    • pp.336-339
    • /
    • 2001
  • The ozone forecasting systems have many problems because the mechanism of the ozone concentration is highly complex, nonlinear, and nonstationary. Especially, the performance of the prediction results in the high-level ozone concentration are not good. This paper describes the modeling method of the ozone prediction system using neuro-fuzzy approaches and fuzzy clustering methods. The dynamic polynomial neural network (DPNN) based upon a typical algorithm of GMDH (group method of data handling) is a useful method for data analysis, the identification of nonlinear complex systems, and prediction of dynamical systems.

  • PDF