• Title/Summary/Keyword: 다층 인공 신경망

Search Result 79, Processing Time 0.028 seconds

Development of a Recognition System of Smile Facial Expression for Smile Treatment Training (웃음 치료 훈련을 위한 웃음 표정 인식 시스템 개발)

  • Li, Yu-Jie;Kang, Sun-Kyung;Kim, Young-Un;Jung, Sung-Tae
    • Journal of the Korea Society of Computer and Information
    • /
    • v.15 no.4
    • /
    • pp.47-55
    • /
    • 2010
  • In this paper, we proposed a recognition system of smile facial expression for smile treatment training. The proposed system detects face candidate regions by using Haar-like features from camera images. After that, it verifies if the detected face candidate region is a face or non-face by using SVM(Support Vector Machine) classification. For the detected face image, it applies illumination normalization based on histogram matching in order to minimize the effect of illumination change. In the facial expression recognition step, it computes facial feature vector by using PCA(Principal Component Analysis) and recognizes smile expression by using a multilayer perceptron artificial network. The proposed system let the user train smile expression by recognizing the user's smile expression in real-time and displaying the amount of smile expression. Experimental result show that the proposed system improve the correct recognition rate by using face region verification based on SVM and using illumination normalization based on histogram matching.

Rainfall Forecasting Using Satellite Information and Integrated Flood Runoff and Inundation Analysis (I): Theory and Development of Model (위성정보에 의한 강우예측과 홍수유출 및 범람 연계 해석 (I): 이론 및 모형의 개발)

  • Choi, Hyuk Joon;Han, Kun Yeun;Kim, Gwangseob
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.6B
    • /
    • pp.597-603
    • /
    • 2006
  • The purpose of this study is to improve the short term rainfall forecast skill using neural network model that can deal with the non-linear behavior between satellite data and ground observation, and minimize the flood damage. To overcome the geographical limitation of Korean peninsula and get the long forecast lead time of 3 to 6 hour, the developed rainfall forecast model took satellite imageries and wide range AWS data. The architecture of neural network model is a multi-layer neural network which consists of one input layer, one hidden layer, and one output layer. Neural network is trained using a momentum back propagation algorithm. Flood was estimated using rainfall forecasts. We developed a dynamic flood inundation model which is associated with 1-dimensional flood routing model. Therefore the model can forecast flood aspect in a protected lowland by levee failure of river. In the case of multiple levee breaks at main stream and tributaries, the developed flood inundation model can estimate flood level in a river and inundation level and area in a protected lowland simultaneously.

Calibrating Stereoscopic 3D Position Measurement Systems Using Artificial Neural Nets (3차원 위치측정을 위한 스테레오 카메라 시스템의 인공 신경망을 이용한 보정)

  • Do, Yong-Tae;Lee, Dae-Sik;Yoo, Seog-Hwan
    • Journal of Sensor Science and Technology
    • /
    • v.7 no.6
    • /
    • pp.418-425
    • /
    • 1998
  • Stereo cameras are the most widely used sensing systems for automated machines including robots to interact with their three-dimensional(3D) working environments. The position of a target point in the 3D world coordinates can be measured by the use of stereo cameras and the camera calibration is an important preliminary step for the task. Existing camera calibration techniques can be classified into two large categories - linear and nonlinear techniques. While linear techniques are simple but somewhat inaccurate, the nonlinear ones require a modeling process to compensate for the lens distortion and a rather complicated procedure to solve the nonlinear equations. In this paper, a method employing a neural network for the calibration problem is described for tackling the problems arisen when existing techniques are applied and the results are reported. Particularly, it is shown experimentally that by utilizing the function approximation capability of multi-layer neural networks trained by the back-propagation(BP) algorithm to learn the error pattern of a linear technique, the measurement accuracy can be simply and efficiently increased.

  • PDF

Study on Establishing Algal Bloom Forecasting Models Using the Artificial Neural Network (신경망 모형을 이용한 단기조류예측모형 구축에 관한 연구)

  • Kim, Mi Eun;Shin, Hyun Suk
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.7
    • /
    • pp.697-706
    • /
    • 2013
  • In recent, Korea has faced on water quality management problems in reservoir and river because of increasing water temperature and rainfall frequency caused by climate change. This study is effectively to manage water quality for establishment of algal bloom forecasting models with artificial neural network. Daecheong reservoir located in Geum river has suitable environment for algal bloom because it has lots of contaminants that are flowed by rainfall. By using back propagation algorithm of artificial neural networks (ANNs), a model has been built to forecast the algal bloom over short-term (1, 3, and 7 days). In the model, input factors considered the hydrologic and water quality factors in Daecheong reservoir were analyzed by cross correlation method. Through carrying out the analysis, input factors were selected for algal bloom forecasting model. As a result of this research, the short term algal bloom forecasting models showed minor errors in the prediction of the 1 day and the 3 days. Therefore, the models will be very useful and promising to control the water quality in various rivers.

Prediction of Undrained Shear Strength of Normally Consolidated Clay with Varying Consolidation Pressure Ratios Using Artificial Neural Networks (인공신경회로망을 이용한 압밀응력비에 따른 정규압밀점토의 비배수전단강도 예측)

  • 이윤규;윤여원;강병희
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.1
    • /
    • pp.75-81
    • /
    • 2000
  • The anisotropy of soils has an important effect on stress-strain behavior. In this study, an attempt has been made to implement artificial neural network model for modeling the stress-strain relationship and predicting the undrained shear strength of normally consolidated clay with varying consolidation pressure ratios. The multi-layer neural network model, adopted in this study, utilizes the error back-propagation loaming algorithm. The artificial neural networks use the results of undrained triaxial test with various consolidation pressure ratios and different effective vertical consolidation pressure fur learning and testing data. After learning from a set of actual laboratory testing data, the neural network model predictions of the undrained shear strength of the normally consolidated clay are found to agree well with actual measurements. The predicted values by the artificial neural network model have a determination coefficient$(r^2)$ above 0.973 compared with the measured data. Therefore, this results show a positive potential for the applications of well-trained neural network model in predicting the undrained shear strength of cohesive soils.

  • PDF

Development of Artificial-Intelligent Power Quality Diagnosis Algorithm using DSP (DSP를 이용한 인공지능형 전력품질 진단기법 연구)

  • Chung, Gyo-Gbum;Kwack, Sun-Geun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.1
    • /
    • pp.116-124
    • /
    • 2009
  • This paper proposes a new Artificial-Intelligent(AI) Power Quality(PQ) diagnosis algorithm using Discrete Wavelet Transform(DWT), Fast Fourier Transform(FFT), Root-Mean-Square(RMS) value. The developed algorithm is able to detect and classify the PQ problems such as the transient, the voltage sag, the voltage swell, the voltage interruption and the total harmonics distortion. The 15.36[kHz] sampling frequency is used to measure the voltages in a power system. The measured signals are used for DWT, FFT, RMS calculation. For AI diagnosis of the PQ problems, a simple multi-layered Artificial Neural Network(ANN) with the back-propagation algorithm is adopted, programmed in C++ and tested in PSIM simulation studies. Finally, the algorithm, which is installed in MP PQ+256 with TI DSP320C6713, is proved to diagnose the PQ problems efficiently.

ROC evaluation for MLP ANN drought forecasting model (MLP ANN 가뭄 예측 모형에 대한 ROC 평가)

  • Jeong, Min-Su;Kim, Jong-Suk;Jang, Ho-Won;Lee, Joo-Heon
    • Journal of Korea Water Resources Association
    • /
    • v.49 no.10
    • /
    • pp.877-885
    • /
    • 2016
  • In this study, the Standard Precipitation Index(SPI), meteorological drought index, was used to evaluate the temporal and spatial assessment of drought forecasting results for all cross Korea. For the drought forecasting, the Multi Layer Perceptron-Artificial Neural Network (MLP-ANN) was selected and the drought forecasting was performed according to different forecasting lead time for SPI (3) and SPI (6). The precipitation data observed in 59 gaging stations of Korea Meteorological Adminstration (KMA) from 1976~2015. For the performance evaluation of the drought forecasting, the binary classification confusion matrix, such as evaluating the status of drought occurrence based on threshold, was constituted. Then Receiver Operating Characteristics (ROC) score and F score according to conditional probability are computed. As a result of ROC analysis on forecasting performance, drought forecasting performance, of applying the MLP-ANN model, shows satisfactory forecasting results. Consequently, two-month and five-month leading forecasts were possible for SPI (3) and SPI (6), respectively.

A Neural Networks Model for Flow Forecasting in Nakdong River Basin (낙동강 유역에서의 유량 예측 신경망 모형에 관한 연구)

  • Han, Kun-Yeun;Kim, Dong-Il;Choi, Hyun-Gu;Yoon, Young-Sam
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2008.05a
    • /
    • pp.1727-1731
    • /
    • 2008
  • 수자원의 효율적인 관리를 위해서는 신뢰성 있는 유량자료의 획득이 대단히 중요하다. 우리나라는 양질의 유량자료를 획득하기 위해 매년 많은 시간과 돈을 투자하고 있으나 자료의 질적인 면에서 만족할 만한 성과를 얻지 못하고 있다. 현재까지 우리나라의 유량자료는 댐의 수문자료와 수량관리 부처인 건교부에서 운영하는 수위표 지점의 수위-유량곡선에서 산출된 자료에 의존하고 있다. 그러나 수위-유량 관계식을 보정하기 위한 유량측정사업이 지속적이지 못하며, 이 관계식은 유량이 적은 저수기 및 갈수기에는 부정확하다는 한계가 있다. 또한, 국립환경과학원 낙동강물환경연구소에서 오염총량관리를 위한 낙동강수계 유량측정사업을 실시하고 있지만, 목적은 낙동강수계의 오염총량관리 단위유역 말단 47개 지점에서 유량측정을 효율적으로 실시하여 수질정책의 기초자료를 제공하는데 있다. 이 자료 역시 오염총량관리를 위하여 유량측정을 실시하여 수자원의 효율적인 관리를 위한 일 유량을 알 수가 없는 한계점을 가지고 있다. 따라서 저수기 및 갈수기에 수질정책의 기초자료를 제공하기 위해서 하천을 포함한 유역의 정확한 강우-유출특성의 파악이 필요하다. 그러나 강우-유출특성 또한 유역 내 강우의 시 공간적 분포가 다르며 그 자가 비선형성이 강하고 여러 변동성을 포함하므로, 강우로부터 하천의 유출량의 정확한 해석이 불가능하다. 그러나 최근 인공지능 분야에서 신호처리, 지능제어 및 패턴인식 등의 수단으로 사용되고 있는 신경망은 학습이라는 최적화 과정을 통해 입력과 출력으로 구성되는 하나의 시스템을 비선형적으로 구축할 수 있으며 이러한 이점을 활용하여 수자원 분야에서 다양하게 적용되고 있다. 본 연구의 목적은 강우-유출자료 및 댐 방류량 자료의 비선형적인 특정을 가장 잘 반영할 수 있는 신경망모형을 적용하여 수질정책의 기초자료를 제공하기 위하여 신뢰성 있는 유량자료를 산정하는 모형을 개발하는 것이다. 이를 위해서 낙동강물환경연구소에서 오염총량관리를 위한 낙동강수계 유량측정 지점 상류의 댐 방류량의 일 방류량자료와 강우자료를 입력 자료로 하여 유량을 예측할 수 있는 유량예측 신경망 모형 FFBN(Flow Forecasting By Neural)을 개발하였다. 그리고 입력 자료로서 장기유출모형인 SWAT의 모의결과를 입력 자료로 추가한 FFBNS(Flow Forecasting By Neural and SWAT)을 개발하였다. 신경망 모형의 구조는 입력층과 출력층 사이에 하나의 은닉층이 존재하는 다층 신경망으로 구성하였으며, 학습단계에서는 오류 역전파 알고리듬 학습방법 중 모멘텀법을 사용하였다. 예측된 유출량을 실측치와의 비교를 위하여 낙본D지점과 낙본 E지점에 대하여 $2005{\sim}2006$년까지의 모의 결과를 낙동 수위측정지점과 구미 수위측정지점의 실측치 통하여 복잡한 비선형성을 가지는 유출 시계열 자료에 대한 효과적인 최적의 신경망모델을 개발하여 유량을 예측하고 적용 가능성을 검토하고자 한다. 모의 결과는 수질정책의 기초자료 제공에 기여할 수 있을 것으로 판단된다.

  • PDF

Optimization Analysis between Processing Parameters and Physical Properties of Geocomposites (지오컴포지트의 공정인자와 물성의 최적화 분석)

  • Jeon, Han-Yong;Kim, Joo-Yong
    • Journal of the Korean Geosynthetics Society
    • /
    • v.6 no.1
    • /
    • pp.39-43
    • /
    • 2007
  • Geocomposites of needle punched and spunbonded nonwovens having the reinforcement and drainage functions were manufactured by use of thermal bonding method. The physical properties (e.g. tensile, tear and bursting strength, permittivity) of these multi-layered nonwovens were dependent on the processing parameters of temperatures, pressures, bonding periods etc. - in manufacturing by use of thermal bonding method. Therefore, it is very meaningful to optimize the processing parameters and physical properties of the geocomposites by thermal bonding method. In this study, an algorithm has been developed to optimize the process of the geocomposites using an artificial neural network (ANN). Geocomposites were employed to examine the effects of manufacturing methods on the analysis results and the neural network simulations have been applied to predict the changes of the nonwovens performances by varying the processing parameters.

  • PDF

Development of an Artificial Neural Network Expert System for Preliminary Design of Tunnel in Rock Masses (암반터널 예비설계를 위한 인공신경회로망 전문가 시스템의 개발)

  • 이철욱;문현구
    • Geotechnical Engineering
    • /
    • v.10 no.3
    • /
    • pp.79-96
    • /
    • 1994
  • A tunnel design expert system entitled NESTED is developed using the artificial neural network. The expert system includes three neural network computer models designed for the stability assessment of underground openings and the estimation of correlation between the RMR and Q systems. The expert system consists of the three models and the computerized rock mass classification programs that could be driven under the same user interface. As the structure of the neural network, a multi -layer neural network which adopts an or ror back-propagation learning algorithm is used. To set up its knowledge base from the prior case histories, an engineering database which can control the incomplete and erroneous information by learning process is developed. A series of experiments comparing the results of the neural network with the actual field observations have demonstrated the inferring capabilities of the neural network to identify the possible failure modes and the support timing. The neural network expert system thus complements the incomplete geological data and provides suitable support recommendations for preliminary design of tunnels in rock masses.

  • PDF