• Title/Summary/Keyword: 다층 분류

Search Result 192, Processing Time 0.03 seconds

Cancer Diagnosis System using Genetic Algorithm and Multi-boosting Classifier (Genetic Algorithm과 다중부스팅 Classifier를 이용한 암진단 시스템)

  • Ohn, Syng-Yup;Chi, Seung-Do
    • Journal of the Korea Society for Simulation
    • /
    • v.20 no.2
    • /
    • pp.77-85
    • /
    • 2011
  • It is believed that the anomalies or diseases of human organs are identified by the analysis of the patterns. This paper proposes a new classification technique for the identification of cancer disease using the proteome patterns obtained from two-dimensional polyacrylamide gel electrophoresis(2-D PAGE). In the new classification method, three different classification methods such as support vector machine(SVM), multi-layer perceptron(MLP) and k-nearest neighbor(k-NN) are extended by multi-boosting method in an array of subclassifiers and the results of each subclassifier are merged by ensemble method. Genetic algorithm was applied to obtain optimal feature set in each subclassifier. We applied our method to empirical data set from cancer research and the method showed the better accuracy and more stable performance than single classifier.

Designand Implementation of Web-Based Blood-Cell Analysis System for Pathology Diagnosis (병리진단을 위한 웹기반 혈액영상 분석시스템의 설계 및 구현)

  • 김경수;이영신;김용국;이윤배;김판구
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 1998.10a
    • /
    • pp.333-337
    • /
    • 1998
  • 의학분야에서 컴퓨터 활용은 단순히 처리할 데이터의 자동화뿐만 아니라 각종 의학영상들을 자동으로 처리함으로서 의사의 진단을 도와주는 형태로 발전되어 가고 있다. 본 논문에서는 병원의 임상병리과에서 번번히 수행하는 혈액검사를 자동화하기 위한 것으로 혈액을 자동 분석하는 웹 기반 분석시스템을 구축하였다. 이를 위해 본 논문에서는 혈액 영상으로부터 특징을 추출하기 위한 단계를 서술하고 세포분류를 위한 다층 신경망을 이용해 구현한 내용을 보인다. 또한 본 연구의 결과로 신경망의 학습 효율을 높이기 위한 전처리로서 학습 데이터에 대해 러프 집합 이론을 적용하여 학습 데이터의 차원을 효과적으로 줄일 수 있었다.

  • PDF

Current Distribution and Loss Calculation of a Multi-layer HTS Transmission Cable (다층 고온 초전도케이블에서의 전류분류 및 손실 계산)

  • 이승욱;차귀수;이지광;한송엽
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2000.02a
    • /
    • pp.29-32
    • /
    • 2000
  • Superconducting transmission cable is one of interesting part in power application using high temperature super-conducting wire as transformance. One important parameter in HTS cable design is transport current distribution because it is related with current transmission capacity and loss. In this paper, we present the calculation theory of current distribution for multi-layer cable using the electric circuit model and in example, calculation results of current distribution and AC loss in each layer of 4-layer HTS transmission cable.

  • PDF

Classification of Heart Disease Using K-Nearest Neighbor Imputation (K-최근접 이웃 알고리즘을 활용한 심장병 진단 및 예측)

  • Park, Pyoung-Woo;Lee, Seok-Won
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2017.11a
    • /
    • pp.742-745
    • /
    • 2017
  • 본 논문은 심장질환 도메인에 데이터 마이닝 기법을 적용한 연구로, 기존 환자의 정보에 대하여 K-최근접 이웃 알고리즘을 통해 결측 값을 대체하고, 대표적인 예측 분류기인 나이브 베이지안, 소포트 벡터 머신, 그리고 다층 퍼셉트론을 적용하여 각각 결과를 비교 및 분석한다. 본 연구의 실험은 K 최적화 과정을 포함하고 10-겹 교차 검증 방식으로 수행되었으며, 비교 및 분석은 정확도와 카파 통계치를 통해 판별한다.

Text Filtering by Boosting Linear Perceptrons (선형 퍼셉트론의 부스팅 학습에 의한 텍스트 여과)

  • 오장민;장병탁
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2000.05a
    • /
    • pp.73-76
    • /
    • 2000
  • 문서 분류나 여과 문제에서 양의 학습 데이터의 부족은 성능 저하의 주요 원인이 된다. 이런 경우 여러 학습 알고리즘이 문제의 특성을 제대로 파악하지 못한다. 본 논문에서는 부스팅 기법을 도입하여 이 문제를 접근해 보았다. 부스팅 기법은 약한 능력을 보유한 학습 알고리즘을 부스팅 과정을 통해 궁극적으로 강력한 성능을 얻을 수 있게 해준다. 간단한 선형 퍼셉트론에 부스팅 기법을 도입하여 문서 여과에 적용하였다. 제안된 알고리즘을 Reuters-21578 문서 집합에 적용한 결과, 재현률 측면에서 다층 신경망보다 우수한 성능을 보였고 특히 양의 학습 데이터가 부족한 문제의 경우 탁월한 결과를 얻을 수 있었다.

  • PDF

Thermal Spray Coating

  • 김종영
    • 전기의세계
    • /
    • v.42 no.1
    • /
    • pp.5-11
    • /
    • 1993
  • 금속이나 세라믹 입자를 용사하여 보호피막을 형성하는 기술은 화염을 사용하는 방법에서 시작했으며 용사재료는 분말, 선, 봉의 형태로 공급되었다. 1960년대에 상업적인 plasma 용사장비가 개발되었으며 여기서 사용된 D.C.plasma jet를 이용하여 분말형태의 용사재료를 용융하고 고속으로 피용사테에 용융입자를 분사하여 피용사체면에 충돌시켜 다층의 얇은 피막을 형성한다. 최근(1985년)에는 R.F.(Radio Frequency) Plasma를 이용하여 열전도도가 작은 재료나 산소와 반응성이 큰 재료를 용사하는 방법도 개발되고 있다. 용사피복법은 현재 여러가지 방법이 실용되고 있으며 재료를 용융하는 열원에 따라 분류하면 표1과 같다. 즉 산소와 연료 가스의 혼합에 의한 연소나 폭발에너지를 이용하는 가스식 용사법과 Arc, Plasma등의 전기 에너지를 이용하는 전기식 용사법으로 크게 나눌 수 있다.

  • PDF

Training Network Design Based on Convolution Neural Network for Object Classification in few class problem (소 부류 객체 분류를 위한 CNN기반 학습망 설계)

  • Lim, Su-chang;Kim, Seung-Hyun;Kim, Yeon-Ho;Kim, Do-yeon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.1
    • /
    • pp.144-150
    • /
    • 2017
  • Recently, deep learning is used for intelligent processing and accuracy improvement of data. It is formed calculation model composed of multi data processing layer that train the data representation through an abstraction of the various levels. A category of deep learning, convolution neural network is utilized in various research fields, which are human pose estimation, face recognition, image classification, speech recognition. When using the deep layer and lots of class, CNN that show a good performance on image classification obtain higher classification rate but occur the overfitting problem, when using a few data. So, we design the training network based on convolution neural network and trained our image data set for object classification in few class problem. The experiment show the higher classification rate of 7.06% in average than the previous networks designed to classify the object in 1000 class problem.

Prognostic Modeling of Metabolic Syndrome Using Bayesian Networks (베이지안 네트워크를 이용한 대사증후군의 예측 모델링)

  • Park Han-Saem;Cho Sung-Bae;Lee Hong Kyu
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2005.07b
    • /
    • pp.292-294
    • /
    • 2005
  • 대사증후군은 당뇨병, 고혈압, 복부 비만, 고지혈증 등의 질병이 한 개인에게 동시에 발현하는 것을 말한다. 미국에서는 $25\%$ 이상의 성인이 대사성 증후군인 것으로 알려져 있으며, 경제 여건의 향상 및 식생활 습관의 변화와 함께 최근 우리나라에서도 심각한 문제가 되고 있다. 한편 불확실성의 처리를 위해 많이 사용되고 있는 베이지안 네트워크는 사람이 분석 가능한 확률 기반의 모델로 최근 의학 분야에서 지식 발견, 데이터 마이닝을 위한 도구로 유용하게 사용되고 있다. 본 논문에 서 는 대사증후군을 예측하는 문제를 다루며, 베이지안 네트워크와 의학 지식을 이용한 대사증후군의 예측 모델을 제안한다. 제안하는 모델을 통해 1993년의 데이터를 가지고 1995년의 상태를 예측하는 분류 실험을 수행하였으며, 실험 결과 다층 신경망, k-최근접 이웃 등의 분류기 보다 높은 $81.5\%$의 예측율을 보였다.

  • PDF

Kernel Perceptron Boosting for Effective Learning of Imbalanced Data (불균형 데이터의 효과적 학습을 위한 커널 퍼셉트론 부스팅 기법)

  • 오장민;장병탁
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2001.04b
    • /
    • pp.304-306
    • /
    • 2001
  • 많은 실세계의 문제에서 일반적인 패턴 분류 알고리즘들은 데이터의 불균형 문제에 어려움을 겪는다. 각각의 학습 예제에 균등한 중요도를 부여하는 기존의 기법들은 문제의 특징을 제대로 파악하지 못하는 경우가 많다. 본 논문에서는 불균형 데이터 문제를 해결하기 위해 퍼셉트론에 기반한 부스팅 기법을 제안한다. 부스팅 기법은 학습을 어렵게 하는 데이터에 집중하여 앙상블 머신을 구축하는 기법이다. 부스팅 기법에서는 약학습기를 필요로 하는데 기존 퍼셉트론의 경우 문제에 따라 약학습기(weak learner)의 조건을 만족시키지 못하는 경우가 있을 수 있다. 이에 커널을 도입한 커널 퍼셉트론을 사용하여 학습기의 표현 능력을 높였다. Reuters-21578 문서 집합을 대상으로 한 문서 여과 문제에서 부스팅 기법은 다층신경망이나 나이브 베이스 분류기보다 우수한 성능을 보였으며, 인공 데이터 실험을 통하여 부스팅의 샘플링 경향을 분석하였다.

  • PDF

Analysis of DNA Microarray Data Using Evolutionary Neural Networks (진화 신경망을 이용한 DNA Microarray 데이터 분석)

  • 김경중;조성배
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2003.10b
    • /
    • pp.733-735
    • /
    • 2003
  • DNA Microarray 기술은 유전자의 발현여부를 매우 빠르게 검사할 수 있는 도구이며 각종 질병의 발생여부를 예측하기 위한 정보를 제공한다. 유전자 발현 데이터로부터 암의 발생 여부를 예측하기 위해서는 기존의 접근방법과 다른 기계학습 기법이 요구된다. 일반적으로 샘플의 개수가 극히 적은 반면에 특징의 개수는 수천에서 수만 개가 존재하기 때문에 문제의 특성에 맞는 분류기의 구조를 결정하는 것이 매우 어려운 일이기 때문이다. 진화 신경망은 신경망의 구조와 가중치를 동시에 학습하며 사용자는 각 개체의 적합도를 평가할 수 있는 방법만 제공해 주면된다. 특히 신경망의 구조를 사전에 고정하지 않아도 되는 장점이 있기 때문에 전문적인 지식이 없는 사용자라도 이용가능하다. 대장암 데이터에 대한 실험결과 제안하는 분류기 모델이 다층 퍼셉트론, SVM (support vector machine), 최근접 이웃 방법에 비해 향상된 성능을 보였다.

  • PDF