• Title/Summary/Keyword: 다층 구조 충격완충장치

Search Result 1, Processing Time 0.017 seconds

Numerical Investigation for Multi-layer Shock Absorber to Improve Survivability of Fuze at High Impact (고충격에 신관의 생존성을 향상시키기 위한 다층 충격완충장치 전산해석 연구)

  • Soh, Kyoung Jae;Kim, Minkyum;Lee, Daehee
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.33 no.4
    • /
    • pp.255-261
    • /
    • 2020
  • This study proposes a method of constructing an effective shock absorber. The existing shock absorber is fabricated only with polyethylene; however, the new shock absorber comprises polyethylene on the outside and a high-density material on the inside. The shock was mostly reduced when the density difference between the inner and outer materials was large. Aluminum, titanium, and copper were chosen as the outer structure of two-layer. Shock reduction was most effective in copper with the highest density, and the maximum deceleration was reduced by 43% while the impulse was reduced by 51% in the proposed shock absorber than the traditional shock absorber. In the cases of four-layer and six-layer shock absorbers, the impulse was reduced, but the maximum deceleration was increased. The fuze must survive from the biggest shock and the remaining shock waves should not exceed the threshold. Thus, a two-layer structure shock absorber using polyethylene-copper was proposed.