• Title/Summary/Keyword: 다중 CCTV

Search Result 59, Processing Time 0.024 seconds

A Study on Combine Artificial Intelligence Models for multi-classification for an Abnormal Behaviors in CCTV images (CCTV 영상의 이상행동 다중 분류를 위한 결합 인공지능 모델에 관한 연구)

  • Lee, Hongrae;Kim, Youngtae;Seo, Byung-suk
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.498-500
    • /
    • 2022
  • CCTV protects people and assets safely by identifying dangerous situations and responding promptly. However, it is difficult to continuously monitor the increasing number of CCTV images. For this reason, there is a need for a device that continuously monitors CCTV images and notifies when abnormal behavior occurs. Recently, many studies using artificial intelligence models for image data analysis have been conducted. This study simultaneously learns spatial and temporal characteristic information between image data to classify various abnormal behaviors that can be observed in CCTV images. As an artificial intelligence model used for learning, we propose a multi-classification deep learning model that combines an end-to-end 3D convolutional neural network(CNN) and ResNet.

  • PDF

Study of Multi-Object Detection System from CCTV (CCTV에서 다중 객체 검출 시스템 연구)

  • Park, Jong-Hwan;Lee, Hyo Jong
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2014.04a
    • /
    • pp.936-938
    • /
    • 2014
  • 폐쇄회로 TV는 우리의 생활에 밀접하게 접근할 수 있는 수준에 다다르게 되었다. 따라서 중요한 작업은 영상에서 우리가 원하는 개체를 검출해내는 것이라 할 수 있다. 그 중에서 사람의 모습을 촬영해서 사람의 특징을 추출하는 연구가 많이 진행되었고 이를 이용해서 실제 CCTV 영상을 토대로 개체를 검출해내는 시스템에 대해 고찰하였다. 여러 가지 개체 검출 알고리즘 중에서 오픈소스로 제공이 되며, 다중 개체를 검출하기 위해서 Haar-like feature를 이용한 개체 추출 알고리즘을 이용하여 CCTV 다중대체 검출에 대해 실험을 진행하였다. 정지영상에서는 정면을 응시하는 얼굴영역 검출에서는 높은 성능을 보이며 다른 각도에서는 차이가 있지만 무난한 성능을 보이지만 실시간에서는 보정 작업이 필요하게 되었다.

Prediction Model for Abnormal Behavior based on Multiple CCTV (다중 CCTV 연동 기반 비정상 행동 예측모델)

  • Jung, Yu-Jin;Yoon, Yong-Ik
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2014.11a
    • /
    • pp.1023-1026
    • /
    • 2014
  • CCTV 는 범죄상황 발생시 보안과 증거확보를 위해 사용되어 왔다. 실제 상황에서 범죄가 발생하기 전 예방을 하는 것 보다 사후 처리에 용도를 두고 있으며, 범죄 상황에서의 보행자에 대한 행동을 미리 예측하기 어렵다. 본 논문에서는 노상에서 CCTV 로 수집된 데이터를 통해 객체 인식 및 객체간의 관계를 파악한다. 파악된 객체를 다중의 CCTV 연동 카메라가 추적하고 객체의 행동을 분석한다. 객체가 이상행동이라고 판단될 시 위협을 받는 객체 및 가까운 기관에 알림을 줄 수 있는 모델을 제안한다. 이를 통해 범죄 발생 전 즉각적인 대응이 가능하며 빠른 상황판단이 가능하다.

Personal Information Protection Method in surveillance Camera (영상 카메라에서 개인정보 보호 방법)

  • Lee, Deok Gyu
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2015.04a
    • /
    • pp.504-505
    • /
    • 2015
  • 본 논문은 현재 이슈화 되고 있는 CCTV에서 광역 감시를 위한 지능형 영상보안중 프라이버시 보호기술에 대해 서술한다. 다중 영상 카메라에서는 단일 CCTV에서 일부 지역에 대한 감시를 벗어나 지역과 지역을 연계하여 보다 넓은 지역을 하나의 시스템으로 연동하여 개인 신변의 안전 서비스를 제공하는데 목적을 갖는다. 본 논문에서는 다중 영상 카메라에서 프라이버시 보호 방법으로써 마스킹 기술, 이벤트 탐지 기술, 그리고 연동 기반의 객체 추적 기술, 객체 검색 기술 및 증거영상 생성 기술을 제시한다.

Study on abnormal behavior prediction models using flexible multi-level regression (유연성 다중 회귀 모델을 활용한 보행자 이상 행동 예측 모델 연구)

  • Jung, Yu Jin;Yoon, Yong Ik
    • Journal of the Korean Data and Information Science Society
    • /
    • v.27 no.1
    • /
    • pp.1-8
    • /
    • 2016
  • In the recently, violent crime and accidental crime has been generated continuously. Consequently, people anxiety has been heightened. The Closed Circuit Television (CCTV) has been used to ensure the security and evidence for the crimes. However, the video captured from CCTV has being used in the post-processing to apply to the evidence. In this paper, we propose a flexible multi-level models for estimating whether dangerous behavior and the environment and context for pedestrians. The situation analysis builds the knowledge for the pedestrians tracking. Finally, the decision step decides and notifies the threat situation when the behavior observed object is determined to abnormal behavior. Thereby, tracking the behavior of objects in a multi-region, it can be seen that the risk of the object behavior. It can be predicted by the behavior prediction of crime.

Video anomaly detection using multi-frame prediction error (다중 프레임 예측 에러를 활용한 영상 이상 탐지)

  • Kim, Yujun;Kim, Young-Gab
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2022.11a
    • /
    • pp.498-500
    • /
    • 2022
  • 공공 안전을 위한 영상 감시 시스템이 증가함에 따라 CCTV 관제사가 관제해야 할 영상의 수가 증가하고 있다. 점점 증가하는 관제 영상 수로 인해 CCTV 관제사는 수많은 영상 사이에서 발생하는 살인, 강도, 폭력 등 위급한 이상 상황을 놓치는 문제가 발생할 수 있다. 이러한 문제를 해결하기 위해 최근에는 영상에서 발생하는 이상 상황을 자동으로 탐지하고 CCTV 관제사에게 알려 관제 효율을 향상시키는 연구가 진행되고 있다. 본 논문은 영상에서 발생하는 이상 상황을 자동으로 탐지하기 위해 예측 기반 이상 탐지 방법에 다중 프레임 예측 에러를 활용해서 영상 이상 탐지 정확도를 향상시키는 방법을 제안한다. 결과적으로 제안한 방법을 사용함으로써 프레임 레벨 AUC가 Ped2 데이터 셋에서 92.70%에서 94.56%, Avenue 데이터셋에서 87.37%에서 89.17%로 상승하였다.

Relation Tracking of Occluded objects using a Perspective Depth (투시적 깊이를 활용한 중첩된 객체의 관계추적)

  • Park, Hwa-Jin
    • Journal of Digital Contents Society
    • /
    • v.16 no.6
    • /
    • pp.901-908
    • /
    • 2015
  • Networked multiple CCTV systems are required to effectively trace down long-term abnormal behaviors, such as stalking. However, the occluding event, which often takes place during tracking, may result in critical errors of cessation of tracing, or tracking wrong objects. Thus, utilizing installed regular CCTVs, this study aims to trace the relation tracking in a continuous manner by recognizing distinctive features of each object and its perspective projection depth to address the problem with occluded objects. In addition, this study covers occlusion event between the stationary background objects, such as street lights, or walls, and the targeted object.

A Scheme on Object Tracking Techniques in Multiple CCTV IoT Environments (다중 CCTV 사물인터넷 환경에서의 객체 추적 기법)

  • Hong, Ji-Hoon;Lee, Keun-Ho
    • Journal of Internet of Things and Convergence
    • /
    • v.5 no.1
    • /
    • pp.7-11
    • /
    • 2019
  • This study suggests a methodology to track crime suspects or anomalies through CCTV in order to expand the scope of CCTV use as the number of CCTV installations continues to increase nationwide in recent years. For the abnormal behavior classification, we use the existing studies to find out suspected criminals or abnormal actors, use CNN to track objects, and connect the surrounding CCTVs to each other to predict the movement path of objectified objects CCTVs in the vicinity of the path were used to share objects' sample data to track objects and to track objects. Through this research, we will keep track of criminals who can not be traced, contribute to the national security, and continue to study them so that more diverse technologies can be applied to CCTV.

A Study on the Evaluation Technique of Intelligent Security Technology Based on Spatial Information : Multi-CCTV Collaboration Technology (공간정보 기반 지능형 방범 기술의 기술성 평가 방안에 관한 연구 : 다중 CCTV 협업 기술을 대상으로)

  • Han, Sun-Hee;Shin, Young-Seob;Lee, Jae-Yong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.7
    • /
    • pp.111-118
    • /
    • 2019
  • In this age where the social environment is changing rapidly and unpredictably, interest in safety from crime is increasing in Korean society. As the desire to live a life free from the fear of crime increases, interest in the construction of safe cities is also rising nationwide. For this, it is important to develop precision-positioning technology and support-service and intelligent security-service technology based on spatial information. Therefore, this study analyzes cases of multiple CCTV collaboration technology from among the intelligent-security technologies, and evaluates the technology's guarantee system through the evaluation system of the Technology Guarantee Fund, and evaluates continuity based on innovation, spreadability, usability, and proposed commercialization in order to enable utilization and commercialization. As a result of analyzing multiple CCTV collaborative technologies through the evaluation system of the Technology Guarantee Fund, the technology with the highest outlook was given five points, and the others were rated as excellent in terms of spreadability, usability, and differentiation. For innovation, the score was three points lower than the other evaluation items, but we expect to overcome that by introducing the latest technology and converging it with other technologies, such as the Internet of Things.

Extraction of Workers and Heavy Equipment and Muliti-Object Tracking using Surveillance System in Construction Sites (건설 현장 CCTV 영상을 이용한 작업자와 중장비 추출 및 다중 객체 추적)

  • Cho, Young-Woon;Kang, Kyung-Su;Son, Bo-Sik;Ryu, Han-Guk
    • Journal of the Korea Institute of Building Construction
    • /
    • v.21 no.5
    • /
    • pp.397-408
    • /
    • 2021
  • The construction industry has the highest occupational accidents/injuries and has experienced the most fatalities among entire industries. Korean government installed surveillance camera systems at construction sites to reduce occupational accident rates. Construction safety managers are monitoring potential hazards at the sites through surveillance system; however, the human capability of monitoring surveillance system with their own eyes has critical issues. A long-time monitoring surveillance system causes high physical fatigue and has limitations in grasping all accidents in real-time. Therefore, this study aims to build a deep learning-based safety monitoring system that can obtain information on the recognition, location, identification of workers and heavy equipment in the construction sites by applying multiple object tracking with instance segmentation. To evaluate the system's performance, we utilized the Microsoft common objects in context and the multiple object tracking challenge metrics. These results prove that it is optimal for efficiently automating monitoring surveillance system task at construction sites.