• Title/Summary/Keyword: 다중 효용 담수 장치

Search Result 4, Processing Time 0.025 seconds

Numerical Simulation of Steam Jet Vacuum System in Multi-effect Desalination Plant (다중효용 담수 설비의 증기이젝터 진공장치에 관한 수치해석)

  • Ko, Sang-Cheol;Kim, Yong-Sun;Choi, Du-Youl;Kim, Pil-Hwan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.3
    • /
    • pp.238-242
    • /
    • 2015
  • A steam jet vacuum system that will be implemented in a multi-effect desalination plant is numerically investigated. The objective of this study is to numerically investigate the performance characteristic of the steam jet vacuum system for the sea water distillation process. The effects of design parameter such as nozzle size and converging duct angle are discussed in order to get a better understanding of flow characteristics inside the steam ejector and subsequently pave the way for more optimum designs. The simulation results have been in good agreement with experimental data and have well reproduced the shock train phenomena of the throat region.

Development of Seawater Distiller utilizing Waste Heat of Portable Electric Generators (발전기 폐열 이용 소형 해수담수화장치 개발)

  • Park, Chang-Dae;Lim, Byung-Ju;Hiroshi, Tanaka
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.6
    • /
    • pp.607-613
    • /
    • 2010
  • A seawater distiller, in which the waste heat from a portable electric generator was used, with a multiple-effect diffusion still was designed. The waste gas from small generators commonly used in islands has not yet been used because it has less thermal energy; however, this waste gas can be used as a heat source for small-capacity distillers and as an additional heat source for solar stills. The proposed distiller comprises a series of closely spaced parallel partitions that are placed in contact with saline-soaked wicks. In the distiller, evaporation and condensation processes are repeated to recycle the thermal energy for increasing the distillate productivity. Experimental results show that the proposed distiller with only one-effect still can produce at least 6.7 kg/day of distilled water; the proposed distiller with a ten-effect still is expected to produce 43 kg/day of distilled water. This amount of distillate is approximately four times the maximum daily productivity of the solar stills, as determined in outdoor experiments.

Development of 3th Effects Evaporative desalination system for Solar Desalination System (태양에너지 해수담수화를 위한 3중 효용 증발식 담수기 개발)

  • Hwang, In-Seon;Joo, Hong-Jin;Yun, Eung-Sang;Kwak, Hee-Youl
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.201-201
    • /
    • 2010
  • The evaporative desalination system with solar energy would be the efficient and attractive method to get fresh water. This study was described the development of Multi Effect Distillation(MED) with solar energy desalination system. The system was designed and manufactured Multi effect distillation on the capacity of $3m^3$/day. The experimental apparatus consists mainly of ejector pump, Hot water pump, flow meter, demister, cooler, evaporator and condenser. Evaporator and condenser were made Shell&Tube Heat Exchanger type with corrugated tube. The experimental variables were chosen $75^{\circ}C$ for hot water inlet temperature, 40, 60 and $80{\ell}$/min for hot water inlet volume flow rate, 6.0 and $8.0{\ell}$/min for evaporator feed seawater flow rate, $18^{\circ}C$ for sea water inlet temperature to cover the average sea water temperature and the salinity of sea water is measured about 33,000 PPM (parts per million). for a year in Korea. This study was analyzed the results of thermal performance of Multi Effect Distillation. The results are as follows, The experimental Multi effect distillation is required about 40 kW heat source for production of $3m^3$/day fresh water. Various operating flow rate was confirm in the experiments to get the optimum design data and the results showed that the optimum total flow was $8.0{\ell}$/min. Comparison of Single Effect Distillation with Multi Effect Distillation showed MED is at least more than double of SED.

  • PDF

Performance and Availability of Seawater Distiller with Heat Pipe Utilizing Low-Grade Waste Heat (저급 폐열 이용 히트파이프 해수담수기의 성능과 유용성)

  • Park, Chang-Dae;Chung, Kyung-Yul;Tanaka, Hiroshi
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.1
    • /
    • pp.81-86
    • /
    • 2013
  • Exhaust gas from a small portable electric generator is simply exhausted to the surroundings because the capacity and quality of the waste heat of this gas is generally not sufficient to recover and utilize. We have proposed a seawater distiller utilizing the thermal energy of waste gas from an electric generator. The distiller recovers heat from the waste gas by means of a heat pipe and uses it effectively through a multiple-effect diffusion-type structure. We constructed an experimental apparatus with a vertical single-effect still having a 4-stroke 50 cc generator engine and found that the experimental results for distillate productivity show good agreement with the theoretical predictions. The results show that the distiller can recover 52 W of waste heat from the gas at $171^{\circ}C$, and ~85% of the recovered heat can be utilized for distillation to produce 70 g/h of fresh water. This is equivalent to a productivity of 500 g/h in the case of a 10-effect still. Therefore, the proposed distiller should be useful in remote areas where electricity and water grids are inadequate.