Proceedings of the Korea Water Resources Association Conference
/
2008.05a
/
pp.169-173
/
2008
본 연구는 저수량 지역 빈도분석(regional low flow frequency analysis)을 수행하기 위하여 일반최소자승법(ordinary least squares method)을 이용한 Bayesian 다중회귀분석을 적용하였으며, 불확실성측면에서의 효과를 탐색하기 위하여 Bayesian 다중회귀분석에 의한 추정치와 t 분포를 이용하여 산정한 일반 다중회귀분석의 추정치의 신뢰구간을 비교분석하였다. 각 재현기간별 비교결과를 보면 t 분포를 이용하여 산정된 평균 추정치와 Bayesian 다중회귀분석에 의한 평균 추정치는 크게 다르지 않았다. 그러나 불확실성 측면에서 평가해볼 때 신뢰구간의 상한추정치와 하한추정치의 차이는 Bayesian 다중회귀분석을 사용한 경우가 기존 방법을 사용한 경우보다 훨씬 작은 것으로 나타났으며, 이로부터 저수량(low flow) 지역 빈도분석을 수행하는 경우 Bayesian 다중회귀분석이 일반 회귀분석보다 불확실성을 표현하는데 있어서 우수하다는 결과를 얻을 수 있었다. 또한 낙동강 유역에 2개의 미계측 유역을 선정하고 구축된 Bayesian 다중회귀모형을 적용하여 불확실성을 포함한 미계측 유역에서의 저수량(low flow)을 추정하였으며 이와 같은 방법이 미계측 유역에서의 저수(low flow) 특성을 나타내는 데 있어서 효과적일 수 있음을 입증하였다.
In medical research, multivariate analysis, especially multiple regression analysis, is used to analyze the influence of multiple variables on the result. Multiple regression analysis should include variables in the model and the problem of multi-collinearity as there are many variables as well as the basic assumption of regression analysis. The multiple regression model is expressed as the coefficient of determination, $R^2$ and the influence of independent variables on result as a regression coefficient, ${\beta}$. Multiple regression analysis can be divided into multiple linear regression analysis, multiple logistic regression analysis, and Cox regression analysis according to the type of dependent variables (continuous variable, categorical variable (binary logit), and state variable, respectively), and the influence of variables on the result is evaluated by regression coefficient${\beta}$, odds ratio, and hazard ratio, respectively. The knowledge of multivariate analysis enables clinicians to analyze the result accurately and to design the further research efficiently.
빈혈의 유병률은 매년 증가하고 있으나 이를 가벼운 질병으로 인식해 치료 시기를 놓치는 환자들이 존재한다. 빈혈의 발생원인으로 혈액 내 헤모글로빈 및 헤모글로빈 내 철 부족이 있으며, 헤모글로빈 측정기술의 경우 채혈 이외에 사람의 신체 및 건강 정보를 적용한 사례는 찾아보기 어렵다. 본 논문에서는 신체(키, 몸무게 및 허리둘레) 및 건강 정보(혈청지오티, 이완기 혈압 및 감마지티피 등)가 포함된 건강검진 빅데이터를 이용하여 단일 특징에 대해 선형회귀분석을 수행하고, 다중 특징에 대해 다중회귀분석을 수행하여 회귀분석 식을 산출, 산출된 회귀분석 식을 통해 헤모글로빈을 추정하여 실제 헤모글로빈값과 오차율을 계산하고 비교한다. 실험 결과, 선형회귀분석 식을 통해 헤모글로빈을 추정하였을 때 평균 8.124%의 오차율이 계산되었으며, 다중회귀분석의 경우 선형회귀분석보다 낮은 6.767%의 오차율이 계산되었다.
Proceedings of the Korea Water Resources Association Conference
/
2006.05a
/
pp.775-779
/
2006
강우자료의 구축은 수문해석에 있어 가장 기본적이며 중요한 단계라 할 수 있다. 하지만 수문 관측 자료의 경우 결측치가 존재하여 그에 대한 보정이 필요한 경우가 종종 발생하게 된다. 따라서 수문자료의 분석을 수행하기에 앞서 우선 자료에 대한 검정을 실시하고, 결측치가 존재할 경우는 이를 보정하여 분석을 수행하여야 한다. 본 연구에서는 다변량통계기법의 하나인 다중회귀분석을 이용하여 강우 결측치를 보정하였다. 본 연구에서는 다중공선성과 자기상관에 대하여 고려한 다중회귀모형을 구성하였다. 모형의 구성시 모든 결측지점에 적용이 가능하지 않아 일반성이 떨어짐을 확인 할 수 있었지만, 모형이 구성될 경우 통계적 적합도와 유의수준을 확인 할 수 있는 장점이 있었으며, 다중회귀모형이 구성되는 경우 좋은 보정 결과를 주는 것을 확인 할 수 있었다.
Proceedings of the Korea Contents Association Conference
/
2013.05a
/
pp.171-172
/
2013
우울은 군대 내 발생되는 극단적인 사고 중 하나인 자살의 주요 원인으로 제시되어 왔다. 본 연구는 군인들의 우울, 불안 및 자아존중감의 수준을 파악하고, 우울의 영향요인을 탐색하고 이들을 예측하는데 주로 사용해 왔던 다중회귀분석 방법과 효과적인 의사결정방법으로 알려진 회귀나무모형의 효과성을 비교해보고자 하였다. 방법: 횡단적 조사연구이며, 우울측정에는 CES-D, 불안측정은 SAI, 자아존중감은 Rosenberg(1965)의 도구를 사용하였다. 연구대상자는 강원도 전방 부대 근무 중인 군인이며, 534부가 회수되었다. SPSS/WIN 18.0을 이용하여 위계적 다중회귀분석과 회귀나무모형을 실시하였다. 결과: 대상자들의 우울, 불안 및 자아존중감의 정도는 각각 $10.7({\pm}9.8)$, $38.5({\pm}10.2)$과 $31.7({\pm}5.2)$이었다. 대상자의 23.6%(126명)가 경한 우울을 나타내었다. 다중회귀분석에 의한 우울 영향요인은 불안, 자아존중감과 복무기간이었으며, 우울에 대하여 62.0%의 설명력을 가지고 있었다. 또한 회귀나무모형에서는 높은 불안과 불안이 다소 낮더라도 전역 후 진로가 불확실한 집단이 우울 위험군일 것으로 예측되었다. 결론: 본 연구 대상자들의 우울의 주요 영향요인은 불안으로 나타났다. 군대 내에서 적용할 수 있는 불안 조절 방법 개발이 필요할 것으로 보인다. 또한 일부 요인에서 차이가 있어, 반복 연구가 필요하지만, 주요 변인인 불안을 예측했다는 점에서 보면 다중회귀분석과 회귀나무모형은 군인들의 우울을 예측에 유용한 방법으로 보인다.
Jung, Chung Gil;Lee, Ji Wan;Kim, Da Rae;Kim, Se Hun;Kim, Seong Joon
Proceedings of the Korea Water Resources Association Conference
/
2018.05a
/
pp.23-23
/
2018
본 연구에서는 다중분위회귀분석모형(Multiple Quantile Regression Model, MQRM)과 MODIS(MODerate resolution Imaging Spectroradiometer) LST (Land Surface Temperature) 자료를 이용하여 전국 공간토양수분을 산정하였다. 공간토양수분을 산정하기 위한 과정은 크게 두가지로 구분된다. 첫 번째로 기존의 MODIS LST 자료를 조건부 합성 보정기법을 적용하여 실측 LST 자료와 비교하여 위성 LST 자료가 갖고 있는 오차를 보정하였다. 그 결과, 조건부 합성 보정기법을 적용하기전 전국 71개 지상관측지점에서 관측한 실측 LST와 MODIS LST의 $R^2$는 전체 평균 0.70으로 어는정도 유의성 있는 상관관계를 나타냈으나 조건부 합성 보정기법을 적용한 후 실측 LST와 MODIS LST의 $R^2$는 전체 평균 0.92로 상당히 크게 향상됨을 알 수 있었다. 두 번째로 보정된 MODIS LST를 이용하여 다중분위회귀분석 모형을 개발하고 토양수분을 예측하는 단계로 입력자료로 위성영상 자료와 관측자료를 융합하여 사용하였다. 위성영상 자료로는 보정된 MODIS LST와 MODIS NDV를 구축하였고 일단위 강수량 및 일조시간의 기상자료는 기상청으로부터 전국 71개 지점에 대해 구축하여 IDW 공간보간기법을 이용한 공간자료로 구축하였다. 토양수분 결과를 비교하기 위한 관측 토양수분은 자동농업기상관측(Automated Agriculture Observing System, AAOS)지점에서 2013년 1월부터 2015년 12월까지의 실측 일단위 토양수분 자료를 구축하여 사용하였다. 다중분위회귀분석 모형은 LST 인자를 중심으로 각각의 분위(0.05, 0.25, 0.5, 0.75, 0.95)에 해당되는 값의 회귀식을 NDVI, 강수 입력자료를 독립인자로서 조합하여 계절 및 토성에 따른 총 80개의 회귀식을 산정하였다. 관측 토양수분과 모의 토양수분을 비교한 결과 $R^2$가 0.70 (철원), 0.90 (춘천), 0.85 (수원), 0.65 (서산), 0.78 (청주), 0.82 (전주), 0.62 (순천), 0.63 (진주), 0.78 (보성)로 높은 상관성을 보였다. 본 연구에서는 다중분위회귀 모형의 성능을 검증하기 위해 기존의 다중선형회귀모형의 결과와 비교하여 크게 개선됨을 나타냈다.
Proceedings of the Korean Institute of Navigation and Port Research Conference
/
2015.07a
/
pp.50-52
/
2015
특허는 기술에 대한 광범위한 정보를 포함하고 있다. 기존의 기술예측은 정량적분석으로 시도되었지만 특허분석을 활용하여 정성적분석을 실시하였다. 특허분석을 시행하기 위하여 R 프로그램을 이용하여 주성분분석과 다중선형회귀분석을 실행하였다. 주성분분석과 다중선형회귀분석을 통하여 키워드를 추출하고 추출된 키워드를 통해 기술예측을 실시한다.
This study employs Bayesian multiple regression analysis using the ordinary least squares method for regional low flow frequency analysis. The parameter estimates using the Bayesian multiple regression analysis were compared to conventional analysis using the t-distribution. In these comparisons, the mean values from the t-distribution and the Bayesian analysis at each return period are not significantly different. However, the difference between upper and lower limits is remarkably reduced using the Bayesian multiple regression. Therefore, from the point of view of uncertainty analysis, Bayesian multiple regression analysis is more attractive than the conventional method based on a t-distribution because the low flow sample size at the site of interest is typically insufficient to perform low flow frequency analysis. Also, we performed low flow prediction, including confidence interval, at two ungauged catchments in the Nakdong River basin using the developed Bayesian multiple regression model. The Bayesian prediction proves effective to infer the low flow characteristic at the ungauged catchment.
Proceedings of the Korea Water Resources Association Conference
/
2016.05a
/
pp.264-264
/
2016
홍수위험의 정도를 표시하기 위한 연구는 다양한 방법으로 진행되어 왔으나, 많은 지역에 수리 및 수문모형을 적용하여 홍수위험을 평가하기에는 매개변수 보정이나 모형의 검정에 한계가 있을 수밖에 없다. 특히, 많은 지역에 대하여 행정구역별로 홍수위험을 평가한다던지, 기후변화에 따른 홍수위험 변화양상을 평가하기 위하여는 더욱 그러하다. 이에 본 연구에서는 기존의 수위관측소에서 관측되어진 유량 자료를 적극 활용하여 시강우량과의 다중회귀분석을 통하여 첨두유량을 예측할 수 있는 회귀방정식을 구축하고 홍수위험을 평가할 수 있도록 시도하였다. 홍수피해는 하천의 유량 증가가 가장 직접적인 원인이 될 수 있으며, 비교적 하천정비가 잘 이루어진 우리나라의 경우는 하천정비 시 설정한 계획홍수량과 호우에 따라 발생되는 첨두유량을 비교하여 홍수피해 발생여부를 판단할 수 있을 것이다. 하천의 첨두유량 값은 복잡한 유역특성이나 수문특성에 의하여 결정되지만, 결국은 시간별 순간 최대강우량의 조합에 의하여 크게 좌우 되는 것으로 판단된다. 본 연구에서는 수도권의 일부 행정구역별 대표 수위관측소를 정하고, 각 지점의 최근 10년 동안의 하천유량 관측자료를 이용하여 단일 호우사상의 1시간, 2시간, 3시간, 5시간, 10시간, 1일, 2일, 3일, 5일, 10일 순간최대강우량과 첨두유량 사이의 다중회귀분석을 실시하여 유의한 통계값을 보이는 자료끼리 회귀방정식을 구성하도록 하였다. 다중회귀분석은 각 하천 지점별로 해당 하천의 수리특성이 일정하게 유지되어진 기간 동안만을 선정하여 분석하였으며, 유량자료 가운데 각 지점에서 관심수위 이상으로 유량이 크게 증가하였던 호우사상만을 사용하였다. 회귀분석 결과, 매우 의미 있는 회귀방정식의 도출이 가능하였는데, 의정부시 신곡교의 경우는 1시간, 10시간, 1일 강우량으로부터, 광주시 경안교 지점의 경우는 3시간, 1일, 10일 강우량으로부터, 양평군 흑천교 지점의 경우는 10시간, 3일 강우량으로부터 각각 첨두유량을 예측할 수 있는 회귀방정식이 높은 유의성을 보이는 것으로 나타나, 유역면적이나 도달시간 등의 유역특성을 어느 정도 반영하고 있는 회귀방정식이 도출된 것으로 판단되었다. 이와 같은 회귀방정식에 의하여 예상되어지는 시간별 강우량 자료를 적용하면 첨두유량을 예측할 수 있으며, 이를 기존 계획홍수량과 비교하여 홍수위험 정도를 적절하게 평가할 수 있을 것으로 판단된다.
The numbers of SCI paper or patent in science and technology are expected to be related with the number of researcher and knowledge stock (R&D stock, paper stock, patent stock). The results of the regression model showed that severe multicollinearity existed and errors were made in the estimation and testing of regression coefficients. To solve the problem of multicollinearity and estimate the effect of the independent variable properly, principal component regression model were applied for three cases with S&T knowledge production. The estimated principal component regression function was transformed into original independent variables to interpret properly its effect. The analysis indicated that the principal component regression model was useful to estimate the effect of the highly correlate production factors and showed that the number of researcher, R&D stock, paper or patent stock had all positive effect on the production of paper or patent.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.