• Title/Summary/Keyword: 다중 해상도 영상

Search Result 267, Processing Time 0.025 seconds

A Study on Adaptive Template Filtering and Wavelet-based Image Compression (적응 템플릿 필터링 및 웨이블렛 기반 영상 압축 연구)

  • Song, Young-Chul
    • Proceedings of the KIEE Conference
    • /
    • 2002.07d
    • /
    • pp.2777-2779
    • /
    • 2002
  • 본 논문에서는 영상안에서의 노이즈를 제거하기 위한 방법과 영상을 압축하기 위한 방법을 제안하였다. 영상을 필터링하기 위한 방법으로 해상도의 손상 없이 영상의 신호대잡음비(SNR)를 개선시킬 수 있는 국부 형태 적응 필터링을 제안하였다. 제안한 알고리즘에서는 템플릿 형태가 고정되어 있는 기존의 필터링 방법 대신에 다중 템플릿들을 정의하였다. 적응 템플릿 필터링을 자기공명영상에 적용할 때 기존의 필터링 방법들에 비하여 향상된 결과를 얻을 수 있으나. $T_1$ 영상과 같이 비교적 작은 동적 범위를 가진 영상에서는 에지에서 계단모양의 artifact가 발견되곤 한다. 본 논문에서는 다중 성분을 갖는 복셀들을 선별하여 이들에 대해서는 가장 큰 크기의 템플릿을 할당함으로써 artifact를 제거하는 방법을 제안하였다. 영상 압축에 있어서는 두 가지 모델이 제안되었다. 첫 번째로, 향상된 정수 기반 웨이블렛 변환을 사용한 무손실에 가까운 압축을 제안하였으며, 두 번째로, 완전 복원이 가능한 정수 기반 웨이블렛 변환을 사용한 통합된 유/무손실 압축을 제안하였다. 모의 실험에서, 제안된 알고리즘에 의해 재구성된 영상들은 부동 소수점 기반 웨이블렛 변환과 JPEG에 의해 재구성된 영상들에 비해 높은 신호대잡음비를 보였다.

  • PDF

Analysis of Image Integration Methods for Applying of Multiresolution Satellite Images (다중 위성영상 활용을 위한 영상 통합 기법 분석)

  • Lee Jee Kee;Han Dong Seok
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.22 no.4
    • /
    • pp.359-365
    • /
    • 2004
  • Data integration techniques are becoming increasing1y important for conquering a limitation with a single data. Image fusion which improves the spatial and spectral resolution from a set of images with difffrent spatial and spectral resolutions, and image registration which matches two images so that corresponding coordinate points in the two images correspond to the same physical region of the scene being imaged have been researched. In this paper, we compared with six image fusion methods(Brovey, IHS, PCA, HPF, CN, and MWD) with panchromatic and multispectral images of IKONOS and developed the registration method for applying to SPOT-5 satellite image and RADARSAT SAR satellite image. As the result of tests on image fusion and image registration, we could find that MWD and HPF methods showed the good result in term of visual comparison analysis and statistical analysis. And we could extract patches which depict detailed topographic information from SPOT-5 and RADARSAT and obtain encouraging results in image registration.

Wavelet-based Video Coding Scheme using Multi-resolution Motion Compensation (다중 해상도 움직임 보상을 이용하는 웨이브렛기반 동영상 부호화)

  • 양창모;이병기;조위덕;정하중;호용성
    • Journal of Broadcast Engineering
    • /
    • v.7 no.1
    • /
    • pp.37-44
    • /
    • 2002
  • In this paper. we propose a new video coding scheme with multi-resolution motion compensation and residual quantization. The main functional blocks of the proposed scheme include multi-level wavelet decomposition. motion estimation and motion compensation. raster scanning within each subband. formation of block trees and blocking partitioning. and adaptive arithmetic coding. Although the proposed ceding scheme is simple and requires low computational complexity, it produces bitstreams tilth good features. such as the embedded structure and SNR scalability. Experimental results demonstrate that the proposed coding scheme is quote competitive to and often outperforms other wavelet-based video coding schemes in the literature.

Embedding a Signature to Pictures under Wavelet Transformation (웨이브렛변환을 이용한 영상으로의 서명데이터 삽입)

  • Do, Jae-Su
    • Convergence Security Journal
    • /
    • v.7 no.1
    • /
    • pp.83-89
    • /
    • 2007
  • This paper is to suggest the method of embedding a signature to pictures secretly under the orthogonal wavelet transform which represents pictures as multi-resolution representations. As it is focused upon the differential output under the multi-resolution representation of pictures, this method can embed bit series to pictures. In doing so, it can compound approximately 6K byte of information with gray-level image $256{\times}256$. The method can include not only the database which designates copyright of pictures but also the author and usage of pictures, and the information of the picture itself. Therefore, this method can easily discriminate the inspection of picture database.

  • PDF

Evaluation of Block-based Sharpening Algorithms for Fusion of Hyperion and ALI Imagery (Hyperion과 ALI 영상의 융합을 위한 블록 기반의 융합기법 평가)

  • Kim, Yeji;Choi, Jaewan
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.33 no.1
    • /
    • pp.63-70
    • /
    • 2015
  • An Image fusion, or Pansharpening is a methodology of increasing the spatial resolution of image with low-spatial resolution using high-spatial resolution images. In this paper, we have performed an image fusion of hyperspectral imagery by using panchromatic image with high-spatial resolution, multispectral and hyperspectral images with low-spatial resolution, which had been acquired by ALI and Hyperion of EO-1 satellite sensors. The study has been mainly focused on evaluating performance of fusion process following to the image fusion methodology of the block association, which had applied to ALI and Hyperion dataset by considering spectral characteristics between multispectral and hyperspectral images. The results from experiments have been identified that the proposed algorithm efficiently improved the spatial resolution and minimized spectral distortion comparing with results from a fusion of the only panchromatic and hyperspectral images and the existing block-based fusion method. Through the study in a proposed algorithm, we could concluded in that those applications of airborne hyperspectral sensors and various hyperspectral satellite sensors will be launched at future by enlarge its usages.

Iterative Generalized Hough Transform using Multiresolution Search (다중해상도 탐색을 이용한 반복 일반화 허프 변환)

  • ;W. Nick Street
    • Journal of KIISE:Software and Applications
    • /
    • v.30 no.10
    • /
    • pp.973-982
    • /
    • 2003
  • This paper presents an efficient method for automatically detecting objects in a given image. The GHT is a robust template matching algorithm for automatic object detection in order to find objects of various shapes. Many different templates are applied by the GHT in order to find objects of various shapes and size. Every boundary detected by the GHT scan be used as an initial outline for more precise contour-finding techniques. The main weakness of the GHT is the excessive time and memory requirements. In order to overcome this drawback, the proposed algorithm uses a multiresolution search by scaling down the original image to half-sized and quarter-sized images. Using the information from the first iterative GHT on a quarter-sized image, the range of nuclear sizes is determined to limit the parameter space of the half-sized image. After the second iterative GHT on the half-sized image, nuclei are detected by the fine search and segmented with edge information which helps determine the exact boundary. The experimental results show that this method gives reduction in computation time and memory usage without loss of accuracy.

Spatio-spectral Fusion of Multi-sensor Satellite Images Based on Area-to-point Regression Kriging: An Experiment on the Generation of High Spatial Resolution Red-edge and Short-wave Infrared Bands (영역-점 회귀 크리깅 기반 다중센서 위성영상의 공간-분광 융합: 고해상도 적색 경계 및 단파 적외선 밴드 생성 실험)

  • Park, Soyeon;Kang, Sol A;Park, No-Wook
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.5_1
    • /
    • pp.523-533
    • /
    • 2022
  • This paper presents a two-stage spatio-spectral fusion method (2SSFM) based on area-to-point regression kriging (ATPRK) to enhance spatial and spectral resolutions using multi-sensor satellite images with complementary spatial and spectral resolutions. 2SSFM combines ATPRK and random forest regression to predict spectral bands at high spatial resolution from multi-sensor satellite images. In the first stage, ATPRK-based spatial down scaling is performed to reduce the differences in spatial resolution between multi-sensor satellite images. In the second stage, regression modeling using random forest is then applied to quantify the relationship of spectral bands between multi-sensor satellite images. The prediction performance of 2SSFM was evaluated through a case study of the generation of red-edge and short-wave infrared bands. The red-edge and short-wave infrared bands of PlanetScope images were predicted from Sentinel-2 images using 2SSFM. From the case study, 2SSFM could generate red-edge and short-wave infrared bands with improved spatial resolution and similar spectral patterns to the actual spectral bands, which confirms the feasibility of 2SSFM for the generation of spectral bands not provided in high spatial resolution satellite images. Thus, 2SSFM can be applied to generate various spectral indices using the predicted spectral bands that are actually unavailable but effective for environmental monitoring.

Fingerprint Image Enhancement Algorithm Based on Gabor Filter Using Multiresolution Image Information (다중해상도 영상정보를 이용한 가보필터 기반 지문영상 개선)

  • Oh Sang-Keun;Park Yeung-Sub;Park Chul-Hyun;Kim Bum-Su;Won Jong-Un;Park Kil-Houm
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.11C
    • /
    • pp.1510-1517
    • /
    • 2004
  • A new fingerprint image enhancement algorithm using multiresolution information and Gabor filter is proposed in this paper. The proposed algorithm performs selection of the region in image according to inclusion of singular points and then performs enhancement using Gabor filtering of the region adjusted in its size. Gabor filter using representative direction in the same block is used in the region that the direction of ridge is not changed much, while Gabor filter using pixel based direction is used in the region that the direction of ridge is changed much. This method can reduce processing time for enhancement using Gabor filter and preserve the merit of Gabor filter.

Multimodality and Application Software (다중영상기기의 응용 소프트웨어)

  • Im, Ki-Chun
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.42 no.2
    • /
    • pp.153-163
    • /
    • 2008
  • Medical imaging modalities to image either anatomical structure or functional processes have developed along somewhat independent paths. Functional images with single photon emission computed tomography (SPECT) and positron emission tomography (PET) are playing an increasingly important role in the diagnosis and staging of malignant disease, image-guided therapy planning, and treatment monitoring. SPECT and PET complement the more conventional anatomic imaging modalities of computed tomography (CT) and magnetic resonance (MR) imaging. When the functional imaging modality was combined with the anatomic imaging modality, the multimodality can help both identify and localize functional abnormalities. Combining PET with a high-resolution anatomical imaging modality such as CT can resolve the localization issue as long as the images from the two modalities are accurately coregistered. Software-based registration techniques have difficulty accounting for differences in patient positioning and involuntary movement of internal organs, often necessitating labor-intensive nonlinear mapping that may not converge to a satisfactory result. These challenges have recently been addressed by the introduction of the combined PET/CT scanner and SPECT/CT scanner, a hardware-oriented approach to image fusion. Combined PET/CT and SPECT/CT devices are playing an increasingly important role in the diagnosis and staging of human disease. The paper will review the development of multi modality instrumentations for clinical use from conception to present-day technology and the application software.

Optimization of Mutual Information for Multiresolution Image Registration (다해상도 영상정합을 위한 상호정보 최적화)

  • Hong, Helen;Kim, Myoung-Hee
    • Journal of the Korea Computer Graphics Society
    • /
    • v.7 no.1
    • /
    • pp.37-49
    • /
    • 2001
  • We propose an optimization of mutual information for multiresolution image registration to represent useful information as integrated form obtaining from complementary information of multi modality images. The method applies mutual information as cost function to measure the statistical dependency or information redundancy between the image intensities of corresponding pixels in both images, which is assumed to be maximal if the images are geometrically aligned. As experimental results we validate visual inspection for accuracy, changning initial condition and addictive noise for robustness. Since our method uses the native image rather than prior feature extraction, few user interaction is required to perform the registration. In addition it leads to robust density estimation and convergence as applying non-parametric density estimation and stochastic multiresolution optimization.

  • PDF