• Title/Summary/Keyword: 다중 집속

Search Result 23, Processing Time 0.027 seconds

Theoretical Development and Experimental Investigation of Underwater Acoustic Communication for Multiple Receiving Locations Based on the Adaptive Time-Reversal Processing (다중수신 수중음향통신을 위한 적응 시계열반전처리 기법의 이론연구와 실험적 검증)

  • Shin Kee-Cheol;Byun Yang-Hun;Kim Jea-Soo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.25 no.5
    • /
    • pp.239-245
    • /
    • 2006
  • Time-reversal processing (TRP) has been shown as an effective way to focus in both time and space. The temporal focusing properties have been used extensively in underwater acoustics communications. Recently. adaptive time-reversal processing (ATRP) was applied to the simultaneous multiple focusing in an ocean waveguide. In this study. multiple focusing with ATRP is extended to the underwater acoustic communication algorithm for multiple receiving locations. The developed algorithm is applied to the underwater acoustic communication to show, via simulation and real data, that the simultaneous self-equalization at multiple receiving locations is achieved.

Multiple Transmit Focusing Method With Modified Orthogonal Golay Codes for Ultrasound Imaging (초음파 영상에서 변형된 직교 골레이 코드를 이용한 동시 다중 송신 집속 기법)

  • 김배형;송태경
    • Journal of Biomedical Engineering Research
    • /
    • v.24 no.3
    • /
    • pp.217-231
    • /
    • 2003
  • Coded excitation with complementary Golay sequences is an effective means to increase the SNR and penetration of ultrasound imaging. in which the two complementary binary codes are transmitted successively along each scan-line, reducing the imaging frame rate by half. This method suffers from low frame rate particularly when multiple transmit focusing is employed, since the frame rate will be further reduced in proportion to the number of focal zones. In this paper. a new ultrasound imaging technique based on simultaneous multiple transmit focusing using modified orthogonal Golay codes is proposed to improve lateral resolution with no accompanying decrease in the imaging frame rate, in which a pair of orthogonal Golay codes focused at two different focal depths are transmitted simultaneously. On receive, these modified orthogonal Golay codes are separately compressed into two short pulses and individually focused. These two focused beams are combined to form a frame of image with improved lateral resolution. The Golay codes were modified to improve the transmit power efficiency (TPE) for practical imaging. Computer simulations and experimental results show that the proposed method improves significantly the lateral resolution and penetration of ultrasound imaging compared with the conventional method.

Controlling the Intensity Distribution of Light at the Output of a Multimode Optical Fiber Using a Polar-coordinate-based Transmission-matrix Method (극좌표 기반 투과 매트릭스 방법을 이용한 다중모드 광섬유 출력단에서의 빛의 세기 분포 제어)

  • Park, Jaedeok;Jo, Jaepil;Yoon, Jonghee;Yeom, Dong-Il
    • Korean Journal of Optics and Photonics
    • /
    • v.33 no.6
    • /
    • pp.252-259
    • /
    • 2022
  • We have conducted a study to control the light-intensity distribution at the output end of a multimode optical fiber via estimating the transmission matrix. A circularly arranged Hadamard eigenmode phase distribution was implemented using a spatial light modulator, and the transmission matrix of a multimode optical fiber was experimentally obtained using a four-phase method. Based on the derived transmission matrix, the spatial phase distribution of light incident upon the optical fiber was adjusted via the spatial light modulator in advance, to focus the light at a desired position at the optical fiber output. The light could be focused with an intensity up to 359.6 times as high as that of the surrounding background signal at a specific position of the multimode fiber's output end, and the intensity of the focused beam was on average 104.6 times as large as that of the background signal, across the area of the multimode fiber's core.

Design of Ultrasound Dynamic Focusing Systems (초음파 다이나믹 집속 시스템의 설계)

  • 김진하;김청월
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.21 no.4
    • /
    • pp.65-71
    • /
    • 1984
  • The design formular of optical focusing systems cannot be applied to ultrasonic B scanners, which use broadband pulses instead of continuous wave. In this paper, a calculation method is studied for analyzing the propagation of ultrasonic broadband pulse excited by ultrasonic array transducers. Using the results, seveial design parameters such as the number of transducer elements, delay time, and the focal point are determined to obtain high resolution in the ultrasonic dynamic focusing system. A dynamic focusing system with low-noise switching characteristics; which attains lateral resolution of 2-3mm all along the axial direction up to 18 cm with a 3.5 MHz linear array transducer, was implemented.

  • PDF

Focusing Geometry Dependence of Single Pass Raman Shifer (단인 통과 라만레이저의 집속 조건에 따른 출력 특성)

  • 고춘수
    • Korean Journal of Optics and Photonics
    • /
    • v.4 no.4
    • /
    • pp.434-441
    • /
    • 1993
  • Focusing geometry dependence of output Stokes energy in single pass methane Raman shifter is investigated. The experimental result shows that the threshold energy decreases as confocal parameter increases. This result can be explained by gain suppression caused by Stokes - anti-Stokes coupling. In this paper, we give simple analysis for the focusing geometry dependence of Stokes - anti-Stokes coupling and present the criterion of confocal parameter to reduce the gain suppression. Focusing geometry dependence of stimulated Brillouin scattering is measured and the result is in good agreement with theoretical prediction.

  • PDF

Simultaneous Multiple Transmit Focusing Method with Orthogonal Chirp Signal for Ultrasound Imaging System (초음파 영상 장치에서 직교 쳐프 신호를 이용한 동시 다중 송신집속 기법)

  • 정영관;송태경
    • Journal of Biomedical Engineering Research
    • /
    • v.23 no.1
    • /
    • pp.49-60
    • /
    • 2002
  • Receive dynamic focusing with an array transducer can provide near optimum resolution only in the vicinity of transmit focal depth. A customary method to increase the depth of field is to combine several beams with different focal depths, with an accompanying decrease in the frame rate. In this Paper. we Present a simultaneous multiple transmit focusing method in which chirp signals focused at different depths are transmitted at the same time. These chirp signals are mutually orthogonal in a sense that the autocorrelation function of each signal has a narrow mainlobe width and low sidelobe levels. and the crossorelation function of any Pair of the signals has values smaller than the sidelobe levels of each autocorrelation function. This means that each chirp signal can be separated from the combined received signals and compressed into a short pulse. which is then individually focused on a separate receive beamformer. Next. the individually focused beams are combined to form a frame of image. Theoretically, any two chirp signals defined over two nonoverlapped frequency bands are mutually orthogonal In the present work. however, a tractional overlap of adjacent frequency bands is permitted to design more chirp signals within a given transducer bandwidth. The elevation of the rosscorrelation values due to the frequency overlap could be reduced by alternating the direction of frequency sweep of the adjacent chirp signals We also observe that the Proposed method provides better images when the low frequency chirp is focused at a near Point and the high frequency chirp at a far point along the depth. better lateral resolution is obtained at the far field with reasonable SNR due to the SNR gain in Pulse compression Imaging .

Gram-Schmidt process based adaptive time-reversal processing (그람슈미트 과정 기반의 적응형 시역전 처리)

  • Donghyeon Kim;Gihoon Byun;J. S. Kim;Kee-Cheol Shin
    • The Journal of the Acoustical Society of Korea
    • /
    • v.43 no.2
    • /
    • pp.184-199
    • /
    • 2024
  • Residual crosstalk has been considered as a major drawback of conventional time-reversal processing in the case of simultaneous multiple focusing. In this paper, the Gram-Schmidt process is applied to time-reversal processing to mitigate crosstalk in ocean waveguides for multiple probe sources. Experimental data-based numerical simulations confirm that nulls can be placed at multiple locations, and it is shown that different signals can be simultaneously focused at different probe source locations, ensuring distortionless responses in terms of active time-reversal processing. This focusing property is also shown to be much less affected by a reduction in the number of receivers than the adaptive time-reversal mirror method. The proposed method is shown to be effective in eliminating crosstalk in passive multi-input multi-output communications using sea-going data.

The Theoretical Investigation of Phased Array Guided Waves (위상배열 유도초음파 검사의 이론적 고찰)

  • Lee, Jae-Sun;Cho, Youn-Ho;Achenbach, Jan D.
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.31 no.4
    • /
    • pp.367-373
    • /
    • 2011
  • Guided waves inspection techniques that are different with inspection technique by bulk waves are widely used in pipe line evaluation due to advantages of long distance inspection. However, most of pipe lines at industrial fields are buried and/or coated. In this case, due to the attenuation effect from soil and/or coating material, there are a lot of difficulty on inspection by conventional ultrasonic technique. In this paper, guided waves propagating patterns are calculated with respect to excitation mode by Normal Mode Expansion(NME). Guided waves patterns based on excited by single transducer and guided wave focusing technique have employed to analyze focusing pattern on a pipe. A longitudinal mode and high order flexural modes are used with various number of transducers to determine sensitivity. Guided waves energy excited by multi transducer with focusing algorithm was successfully focused at a desired point.

Position Uncertainty due to Multi-scattering in the Scintillator Array of Dual Collimation Camera (복합 집속 카메라의 섬광체배열에서 다중산란에 의한 위치 불확실성)

  • Lee, Won-Ho
    • Journal of radiological science and technology
    • /
    • v.31 no.3
    • /
    • pp.287-292
    • /
    • 2008
  • Position information of radiation interactions in detection material is essential to reconstruct a radiation source image. With most position sensing techniques, the position information of a single interaction inside the detectors can be precisely obtained. Each interaction position of multi-scattering inside scintillators, however, can not be individually measured and only the average of the scattering positions can be obtained, which causes the uncertainty in the measured interaction position. In this paper, the position uncertainties due to the multi-scattering were calculated by Monte Carlo simulation. The simulation model was a 50 by 50 by 5 mm $LaCl_3$(Ce) scintillator(pixel size is 2 by 2 by 5mm) which was utilized for the dual collimation camera. The dual collimation camera uses the information from both photoelectric effect and Compton scattering, and therefore, position uncertainties for both partial and full energy deposition of radiation interactions are calculated. In the case of partial energy deposition(PED), the standard deviations of positions are less than $1{\sim}2mm$, which means the uncertainty caused by multi-scattering is not significant. Because the effect of the multi-scattering with PED is insignificant, the multi-scattering has little effect on the performance of Compton imaging of dual collimation camera. In the case of full energy deposition(FED), however, the standard deviation of the positions is about twice that of the pixel size of the 1stdetector, except for 122keV incident radiations. Therefore, the standard deviations caused by multi-scatterings should be considered in the design of the coded mask of the dual collimation camera to avoid artifact on the reconstructed image. The position uncertainties of the FEDs are much larger than those of the PEDs for all radiation energies and the ratio of PEDs to FEDs increases when the incident radiation energy increases. The position uncertainties of both PEDs and FEDs are dependent on the incident radiation energy.

  • PDF

A Study on the Near-Field Simulation Method for AESA RADAR using a Single Beam-Focusing LUT (단일 빔 집속 LUT를 이용한 AESA 레이다의 근전계 시뮬레이션 기법)

  • Ju, Hye Sun
    • Journal of the Korea Society for Simulation
    • /
    • v.28 no.2
    • /
    • pp.81-88
    • /
    • 2019
  • Since the AESA radar scans and tracks a distant targets or ground, it requires a test field which meets far-field condition before flight test. In order to test beam foaming, targeting, and availability from cluttering and jamming, it is general to build a outdoor roof-lab test site at tens of meters high. However, the site is affected by surrounding terrain, weather, and noise wave and is also requires time, space, and a lot of costs. In order to solve this problem, theoretical near-field beam foaming method has proposed. However, it requires modification of associated hardware in order to construct near-field test configuration. In this paper, we propose near-field beam foaming method which use single LUT in order to calibrate the variation of TRM(transmit-receive module) which consists AESA radar without modification of associated hardware and software. It requires less costs than far-field test and multiple LUT based near-field test, nevertheless it can derives similar experimental results.