• Title/Summary/Keyword: 다중 증거 결합

Search Result 3, Processing Time 0.017 seconds

Analysis of Combining Multiple Evidences in Information Retrieval (정보 검색에서의 다중 증거 결합에 대한 분석)

  • Lee, Jun-Ho;Jo, Hyeon-Yang;Choe, Seon-Hui
    • Journal of KIISE:Software and Applications
    • /
    • v.26 no.5
    • /
    • pp.639-646
    • /
    • 1999
  • 질의 또는 문서에 대한 상이한 표현 방법 또는 상이한 검색 기법은 서로 다른 집합의 문서들을 검색한다고 알려져왔다. 최근 이러한 특성을 이용하여 다양한 표현 방법 또는 검색 기법을 결합함으로써 보다 높은 검색 효과를 얻을수있음이 입증되었다. 그러나 이러한 다중 증거 결합이 검색 효과를 개선시키는 이유에 대해서는 아직까지 충분한 설명이 이루어지지않은 상태이다. 본 논문에서는 다중 증거 결합이 검색 효과를 개선하는 이유를 분석하고 이에 근거하여 다중 증거들을 효과적으로 결합할수 있는 방법을 조사한다. 또한 다중 증거 결합에 있어서 유사도 대신에 순위의 사용이 검색 효과에 미치는 영향을 조사한다.

Robust 3D Hand Tracking based on a Coupled Particle Filter (결합된 파티클 필터에 기반한 강인한 3차원 손 추적)

  • Ahn, Woo-Seok;Suk, Heung-Il;Lee, Seong-Whan
    • Journal of KIISE:Software and Applications
    • /
    • v.37 no.1
    • /
    • pp.80-84
    • /
    • 2010
  • Tracking hands is an essential technique for hand gesture recognition which is an efficient way in Human Computer Interaction (HCI). Recently, many researchers have focused on hands tracking using a 3D hand model and showed robust tracking results compared to using 2D hand models. In this paper, we propose a novel 3D hand tracking method based on a coupled particle filter. This provides robust and fast tracking results by estimating each part of global hand poses and local finger motions separately and then utilizing the estimated results as a prior for each other. Furthermore, in order to improve the robustness, we apply a multi-cue based method by integrating a color-based area matching method and an edge-based distance matching method. In our experiments, the proposed method showed robust tracking results for complex hand motions in a cluttered background.

Improving the Effectiveness of Information Retrieval Using Data Fusion Method in the Vector and Neural Network Model (벡터와 신경망 모델에서 데이터 퓨전 기법을 이용한 정보검색의 효율성 향상)

  • 최성환
    • Proceedings of the Korean Society for Information Management Conference
    • /
    • 2001.08a
    • /
    • pp.137-142
    • /
    • 2001
  • 본 논문에서는 벡터모델과 신경망 모델을 이용하여 데이터 퓨전의 관점에서 다중증거로서 가중치, 문헌분리가, 엔트로피, 공기유사도를 적절히 결합하여 질의를 확장하는 방법을 제안한다. 실험결과 코사인 정규화 가중치 알고리즘, 문서길이 정규화 가중치 알고리즘과 결합하여 질의를 확장하는 것이 정규화시키지 않고 단순히 문헌빈도와 역문헌빈도의 조합을 이용한 가중치 알고리즘과 결합했을 때 보다 평균 정확률 향상이 더 높게 나타났다. 또한 다양한 공기기반 유사도를 이용하여 질의확장을 한 결과 벡터모델과 신경망 모델에서 코사인 공기유사도에 기반하여 질의확장한 경우가 다른 공기유사도에 비해 더 좋은 성능을 보였다.

  • PDF