우리나라의 겨울철 자연재해 중 대설에 의한 피해가 발생하는 빈도가 증가하고 있는 가운데 그 피해를 예측하고 대비하기 위한 연구들이 다수 진행되고 있다. 강설은 일단위로 측정하며, 매일 새롭게 내린 강설의 양인 최심신적설과 기존에 녹지 않고 쌓여 있던 깊이까지를 고려한 최심적설로 구분된다. 우리나라의 경우에는 갑작스럽게 내린 폭설에 의한 피해가 대부분이므로 최심신적설량을 예측하는 것이 매우 중요하다. 이에 본 연구에서는 다중회귀분석을 이용해 우리나라의 최심신적설량을 추정하기 위한 식을 개발하였다. 다중회귀분석을 위한 독립변수로는 해당 일에 예측된 강수량, 일평균기온, 일최고기온, 일최저기온을 사용하였으며, 강수량과 일평균기온의 상호작용을 고려할 수 있도록 모형을 구성하였다. 모형의 개발에는 전국 74개 기상관측소의 최심신적설 자료를 관측소 단위로 전체 자료의 2/3을 무작위로 추출하여 이용하였으며, 추출되지 않고 남은 1/3의 자료를 이용해 모형에 대한 검증을 실시하였다. 그 결과 상호작용항이 포함되지 않은 다중선형회귀모형에 비해 상호작용을 고려한 다중회귀모형의 예측력이 훨씬 우수하게 나타났다. 강수량과 기온이 정확하게 예측된다면 개발된 추정식을 이용해 간편하게 최심신적설량을 예측할 수 있어, 폭설에 대한 대비에 활용할 수 있을 것으로 판단된다.
본 연구는 주요지천 홍수예측에 적용된 통계적 모형을 개선하여 예측 결과의 정확성 향상을 도모하는 데 목적이 있다. 중랑천, 탄천, 왕숙천 등 한강수계 주요 지천은 홍수예보 지점으로 유역면적이 작고 도달 시간이 짧아 기존의 대하천 홍수예보에 이용되고 있는 수문학적 홍수예측 모형을 적용하기에는 한계가 있다. 이러한 문제점을 해결하기 위해 주요 지천 홍수예측에 통계적 모형인 다중선형 회귀모형을 이용하는 방법이 제안되어 활용되었다. 본 연구에서는 지천홍수예측에 기 적용된 다중선형 회귀 모형의 다중공선성 문제를 해결하기 위해 독립변수를 조정하고, 10분 단위 관측 자료를 활용한 예측 결과를 얻기 위해 매개변수를 재산정하였다. 그 결과 기존 모형에 비해 적은 수의 독립변수와 재 산정된 매개변수를 이용한 통계적 모형으로 예측 수위의 오차를 줄일 수 있었다.
국내 석유 시장은 국제 석유 가격의 변동에 매우 민감하기 때문에 그 변동성에 대한 파악과 대처가 중요하다. 특히, 높은 소비량을 보이는 휘발유의 가격이 어떠한 요인에 인해 변화하는지 명확하게 파악하는 것이 필요하다. 국제 휘발유 가격은 휘발유 수급, 지정학적 사건, 미국 달러화 가치 변동 등 글로벌 요인에 영향을 받는다. 그러나 기존의 연구들은 휘발유의 수급에만 초점에 맞추어 진행하였다는 한계가 존재한다. 본 연구에서는 다양한 머신러닝 기반의 회귀 모델을 활용하여 거시적 경제지표와 국제 휘발유 가격 간의 인과관계를 탐색한다. 첫째, 다양한 세계 경제지표 데이터를 수집한다. 둘째, 데이터 전처리를 진행한다. 셋째, 다중선형회귀, Ridge 회귀, Lasso(Least Absolute Shrinkage and Selection Operator) 회귀 모델을 활용하여 모델링한다. 실험 결과, 테스트 데이터 셋에서 다중선형회귀 모델이 가장 높은 정확도(97.3%)를 보였다. 우리는 국제 휘발유 가격의 예측은 국내 경제 안정성과 에너지 정책 결정에 도움이 될 수 있을 것으로 기대한다.
강수는 다양한 대기 변수들의 영향으로 나타나기 때문에 비선형성이 매우 강하다. 따라서 역학 모형을 통해 예측된 강수의 보정은 비선형 모형인 인공 신경망 등을 통해 가능할 것이지만, 인공 신경망의 경우 초기 가중치 선택, 지역 최소화 문제, 뉴런의 수 결정 등의 문제로 인한 한계가 있다. 그러므로 본 연구에서는 가장 보편적으로 사용되는 다중 선형 회귀 모형을 이용하여 CGCM에 의해 모사된 강수를 보정하였으며, 예측성을 살펴보았다. 이를 위하여 우선 PNU/CME 접합 대순환 모형(Coupled General Circulation model, CGCM)(박혜선과 안중배, 2004)을 이용하여 1979년부터 2005년까지 매해 4월부터 8월까지 5개월간 앙상블 적분을 하였다. 적분 결과 중 한반도를 포함한 동북아시아 지역$(110^{\circ}E-145^{\circ}E,\;25^{\circ}N-55^{\circ}N)$의 여름철인 6월(리드 2), 7월(리드 3), 8월(리드 4) 및 여름철 평균인 JJA(from June to August) 기간의 PNU/CME CGCM에 의해 모사된 강수를 보정하기 위해 다중 선형 회귀(Multiple Linear Regression, MLR)를 이용하였다. PNU/CME 접합 대순환 모형의 결과 중 강수, 500 hPa 연직 속도, 200 hPa 발산장, 지상 기온 등의 예측 인자와 관측 강수와의 선형적인 관계를 이용하여 MLR 모형을 구축하였다. 그리고 교차 검증(cross- validation)을 수행하여 PNU/CME 접합 대순환 모형의 결과와 교차 검증 결과를 비교하였다. 상관계수, 적중률 (hit rate), 오보율(false alarm rate) 그리고 Heidke 기술 점수(Heidke skill score) 등을 살펴본 바, 보정하지 않은 모형의 결과에 비해 MLR 모형을 이용하여 보정한 결과의 강수에 대한 예측성이 뛰어난 것을 알 수 있었다.
본 연구는 대한민국 육군이 선도적으로 도입하고자 노력하고 있는 AI 면접체계의 자료를 통합 비교차 다중 분위수 회귀나무 모형(unified non-crossing multiple quantile tree; UNQRT)을 활용하여 분석한 것이다. 분위수 회귀가 일반적인 선형회귀에 비하여 많은 장점을 가지지만, 선형성 가정은 여전히 많은 현실 문제해결에 있어 지나치게 강한 가정이다. 선형성을 완화한 모형의 하나인 기존 나무모형 기반의 분위수 회귀는 추정된 분위수 함수별로 교차하는 문제와 분위수별로 나무모형을 제시하여 해석력을 저하시키는 문제가 있다. 통합 비교차 다중 분위수회귀나무 모형은 비교차 제약식을 부여한 상태로 다중 분위수 함수를 동시에 추정함으로서 분위수 함수의 교차 문제를 해결하며, 극단 분위수에서 안정된 결과를 기대할 수 있고, 하나의 통합된 나무모형을 제시하여 우수한 해석력이 있다. 본 연구에서는 통합 비교차 다중 분위수회귀나무 모형을 활용하여 육군 AI 면접체계의 결과와 기존 인사자료간 관계를 충분히 탐색하여 의미있는 다양한 결과를 도출하였다.
TBM 공법은 굴착면 안정성 확보 및 주변환경에 비치는 영향을 최소화하기 때문에 도심지나 하·해저터널 등에서 적용 사례가 증가하는 추세이다. 디스크 커터의 수명을 예측하는 대표적인 모델 중 NTNU모델은 커터수명지수(Cutter Life Index, CLI)를 주요 매개 변수로 활용하지만 복잡한 시험절차와 시험장비의 희귀성으로 측정에 어려움이 있다. 본 연구에서는 다중선형회귀분석과 트리 기반의 머신러닝 기법으로 암석물성을 활용하여 CLI를 예측하였다. 문헌 조사를 통해 암석의 일축압축강도, 압열인장강도, 등 가석영함량과 세르샤 마모지수 등을 포함한 데이터베이스를 구축하였고 파생변수를 계산하여 추가하였다. 다중선형회귀분석은 통계적 유의성과 다중공선성을 고려하여 입력 변수를 선정하였고 머신러닝 예측 모델은 변수 중요도를 기반으로 입력 변수를 선정하였다. 학습용과 검증용 데이터를 8:2로 나누어 모델 간 예측 성능을 비교한 결과 XGBoost가 최적의 모델로 선정되었다. 본 연구에서 도출된 다중선형회귀모델과 XGBoost모델을 선행 연구와 예측 성능을 비교하여 타당성을 확인하였다.
Journal of the Korean Data and Information Science Society
/
제18권2호
/
pp.327-344
/
2007
다중공선성의 데이터에 사용되는 대표적인 편향회귀방법은 능형회귀(RR), 주성분회귀(PCR), 부분최소제곱회귀(PLS) 등이다. 이 회귀방법들은 계수베거 추정량의 놈(norm)이 모두 보통 최소제곱회귀(OLS)의 추정량의 놈보다 작아진다는 의미에서 축소회귀라 부른다. 새로운 회귀방법으로 RR과 PCR을 결합한 능형주성분회귀(RPCR)가 있고 RR과 PLS를 결합한 능형부분최소제곱회귀(RPLS)가 있으며 이들도 또한 축소회귀이다. 이들 추정량은 X'X의 고유벡터들의 선형결합으로 나타낼 수 있고 따라서 각 고유방향에서 OLS에 비해 얼마나 축소되는지를 연구할 수 있다. 본 논문에서는 먼저 이들 추정량을 일반적인 축소인자의 식으로 나타내고 이를 이용하여 MSE의 일반식을 구하였으며 PLS 추정량의 MSE 식도 구하였다. 그리고 RPLS의 축소인자 식을 두 가지 다른 형태로 유도하였다. RPLS의 경우도 이 축소인자 식을 MSE의 일반식에 대입하면 MSE 식이 바로 얻어진다. 그러나 PLS나 RPLS의 축소인자는 y의 복잡한 비선형이 되어 결정적이 아니므로 이들 추정량의 MSE는 근사적인 식이라 할 수 있다. 따라서 PLS나 RPLS를 평가하기 위해 이 MSE를 사용하는 것은 제한적이며, 경험적인 방법으로 이들 회귀의 수행성을 평가하는 것이 필요하다. 다중공선성의 대표적인 데이터인 근적외선 분광 데이터를 이용하여 이 유도된 회귀의 축소인자 값이 인자수에 따라 어떻게 변화하는지와 전체적인 축소 비율도 살펴보았다. 이들의 축소 형태를 잘 이해하면 회귀방법들의 예측력과 안정성을 파악하는데 많은 도움이 되리라 판단된다.
조선소의 생산계획 담당자가 기존 실적 정보를 이용하여 관심 대상인 미래의 생산계획 상황을 보다 쉽게 예측하여 생산계획의 적중률을 높일 수 있도록 할 예정이다. 2006년에서 2016년의 S조선사의 2차 데이터를 이용하여 요인 분석을 하고 다중회귀분석 모형을 설계하여 활용하는 프로세스를 설계한다. 사례 연구를 통해 연구 모형이 적절한지를 검증할 계획이다.
우리 나라의 딸기 수경재배 면적은 2002년 5ha로 시작해서, 2007년에는 84ha, 2012년에는 317ha, 2017년에 1,575ha로 매년 30% 이상 급속하게 성장하고 있다. 이런 경향은 수경재배가 토양재배보다 작업이 용이하여 노동시간이 절약되며, 수량을 더 많이 생산할 수 있기 때문이다. 하지만, 공급양액을 배액으로 흘려버리는 비순환식 수경재배 방식이 증가 하면서 환경오염을 유발시킬 뿐만 아니라 수경재배 운영비용의 증가를 가져오고 있다. 본 논문은 작물 생장에 최적화된 양액공급을 위해 상관관계 분석 및 다중 선형 회귀 모델 기반의 딸기 수경재배 환경에서의 최적 양액 흡수량을 분석하고 추정해 보았다. 분석 결과, 수경재배 환경정보(일사량, 온도, 습도, CO2 등)를 대상으로 일사량 및 온도가 습도 및 CO2에 비해 딸기재배를 위한 양액 흡수량에 더 큰 영향을 주는 것으로 분석되었고, 다중 선형 회귀 모델을 통한 회귀식의 R-Square값은 0.358으로 나타났다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.