• Title/Summary/Keyword: 다중 사용자 MIMO

Search Result 174, Processing Time 0.027 seconds

Performance Improvement of Downlink Real-Time Traffic Transmission Using MIMO-OFDMA Systems Based on Beamforming (Beamforming 기반 MIMO-OFDMA 시스템을 이용한 하향링크 실시간 트래픽 전송 성능 개선)

  • Yang Suck-Chel;Park Dae-Jin;Shin Yo-An
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.43 no.3 s.345
    • /
    • pp.1-9
    • /
    • 2006
  • In this paper, we propose a MIMO-OFDMA (Multi Input Multi Output-Orthogonal Frequency Division Multiple Access) system based on beamforming for performance improvement of downlink real-time traffic transmission in harsh channel conditions with low CIR (Carrier-to-Interference Ratio). In the proposed system, we first consider the M-GTA-SBA (Modified-Grouped Transmit Antenna-Simple Bit Allocation) using effective CSI (Channel State Information) calculation procedure based on spatial resource grouping, which is adequate for the combination of MRT (Maximum Ratio Transmission) in the transmitter and MRC (Maximum Ratio Combining) in the receiver. In addition, to reduce feedback information for the beamforming, we also apply QEGT (Quantized Equal Gain Transmission) based on quantization of amplitudes and phases of beam weights. Furthermore, considering multi-user environments, we propose the P-SRA (Proposed-Simple Resource Allocation) algorithm for fair and efficient resource allocation. Simulation results reveal that the proposed MIMO-OFDMA system achieves significant improvement of spectral efficiency in low CRI region as compared to a typical open-loop MIMO-OFDMA system using pseudo-orthogonal space time block code and H-ARQ IR (Hybrid-Automatic Repeat Request Incremental Redundancy).

A Cell Selection Technique Considering MIMO Precoding (MIMO 프리코딩을 고려한 셀 탐색 기법)

  • Kim, Han Seong;Hong, Tae Howan;Cho, Yong Soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37A no.12
    • /
    • pp.1076-1084
    • /
    • 2012
  • In the CS/CB(Coordinated Scheduling/Beamforming) scheme, the cell edge user throughput is increased by selecting MIMO (Multiple Input Multiple Output) precoders which can minimize the interferences from adjacent base stations (BSs). However, in current LTE(Long Term Evolution) systems, the serving cell is selected in the initialization stage by using the synchronization signals and cell specific reference signals transmitted by adjacent BSs with a single antenna. The selected BS in the initialization stage may not be the best one since the MIMO precoding gain has not been considered in the cell selection stage. In this paper, a new cell selection technique is proposed for LTE systems with MIMO precoder by taking into account the effect of the precoder in the initialization stage. The proposed technique enables a user equipment (UE) in the cell boundary to select the serving BS by using the information (channel rank, effective channel capacity, and effective SINR(Signal to Interference plus Noise Ratio)) acquired from cell specific reference signals of candidate BSs. It is verified by computer simulation that the proposed technique can increase the channel capacity significantly in the multi-cell environments, compared with the conventional CS/CB scheme.

Projection of Spatial Correlation-Based Antenna Selection for Cognitive Radio Systems in Correlated Channels (인지무선 시스템의 상관채널에서 공간 상관 행렬 사영을 이용한 안테나 선택기법)

  • Cho, Jae-Bum;Jang, Sung-Jeen;Jung, Won-Sik;Kim, Jae-Moung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.1A
    • /
    • pp.8-16
    • /
    • 2012
  • Recent work has been shown that cognitive radio systems with multiple antenna at both transmitter and receiver are able to improve performance of secondary users. In such system, the main drawback is the increased complexity and raised cost as the number of antennas increase. It is desirable to apply antenna selection which select a subset of the available antennas so as to solve these problems. In this paper, we consider antenna selection method for cognitive radio systems in correlated channel from the IEEE 802.11n. For a multiple-input multiple-output(MIMO) system with more antennas at transmitter than the receiver, we select the same number of transmit antennas as that of receive antennas. The exhaustive search for optimal antenna becomes impractical. We present criterion for selecting subset in terms of projection of channel correlation vector to increase performance of secondary user with decreasing interference at primary user.

Joint Spatial Division and Reuse for Maximizing Network Throughput in Densely-Deployed Massive MIMO WLANs (고밀집 환경에서 대용량 MIMO WLAN의 네트워크 용량 최대화를 위한 결합 공간 분할 및 재사용 기법)

  • Choi, Kyung Jun;Kim, Kyung Jun;Kim, Kwang Soon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.3
    • /
    • pp.469-477
    • /
    • 2015
  • In this paper, joint spatial division and reuse (JSDR) scheme is proposed for maximizing network throughput in densely-deployed wireless local area networks equipped with massive antenna array. The proposed JSDR scheme divides the massive spatial space into two subspaces: one is for suppressing the interference from the neighboring access points and another is for sensing the carrier sensing and transmitting the information-bearing signals to intended stations. By using computer simulation, the proposed JSDR can provide 133% higher network throughput, compared to the carrier sensing technique defined in the IEEE 802.11 standard so that the proposed JSDR is suitable for the next generation WLAN systems.

Transmission Diversity Scheme Using Antenna Array of Small Cell (소형 기지국의 안테나 배열을 이용한 전송 다이버시티 기법)

  • Paik, Jong-Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.3
    • /
    • pp.301-303
    • /
    • 2016
  • This paper proposes a method providing diversity gain using small base stations in a cell coverage in order to improve diversity gain. The small base stations and the conventional base station consist a virtual MIMO array by using the cooperative communication scheme. Also, transmission diversity scheme is applied. A mobile user can receive the signals having the improved reliability by the applied transmission diversity scheme and the cooperative communication scheme.

Limited Feedback and Scheduling for Coordinated SDMA (협력 공간 분할 다중 접속 기술을 위한 제한된 피드백과 스케줄링)

  • Mun, Cheol;Jung, Chang-Kyoo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.6
    • /
    • pp.648-653
    • /
    • 2011
  • In this paper, coordinated space division multiple access(SDMA) technology is proposed to mitigate inter-cell interference by using partial channel state information in cooperative wireless communications system with limited feedback. Each AT selects an optimal cluster transmission mode and sends it back to a cluster scheduler, and at the cluster scheduler, ATs are scheduled within a AT group with the identical cluster transmission mode, and the optimal transmission mode and the corresponding scheduled ATs are determined to maximize scheduling priority. Also, in order to enhance multiuser diversity gain, an extended transmission feedback method is proposed to feed back multiple preferred cluster transmission modes at each AT. It is shown that the proposed coordinated SDMA scheme outperforms existing non-coordinated SDMA schemes in terms of the average system throughput.

Power Efficient Precoding by Reducing the Effect of the Largest Singular Value of channel Inverse Matrix (채널 역변환 매트릭스의 가장 큰 싱귤러 값 영향을 줄이는 다중 사용자 프리코딩)

  • Ro, Se Yong;Yang, Hyun Wook;Chong, Jong Wha
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.8 no.4
    • /
    • pp.115-120
    • /
    • 2012
  • In multi-user multi-input multi-output (MU-MIMO) system, zero forcing beamforming (ZFB) is regarded as a realistic solution for transmitting scheme due to its low complexity and simple structure. However, ZFB shows a significant performance degradation when channel matrix has large condition number. In this case, the largest singular value of the channel inversion matrix has a dominant effect on transmit power. In this paper, we propose a perturbation method for reducing an effect of the dominant singular value. In the proposed algorithm, channel inverse matrix is first decomposed by SVD for the transmit signal to be expressed as a combination of singular vectors. Then, the transmit signal is perturbed to reduce the coefficient of the singular vector corresponding to the largest singular value. When a number of transmit antennas is 4, the simulation results of this paper shows that the proposed method shows 8dB performance enhancement at 10-3 uncoded bit error rate (BER) compared with conventional ZFB. Also, the simulation results show that the proposed method provides a comparable performance to Tomlinson-Harashima Precoding (THP) with much lower complexity.

An Adaptive Joint Precoding for Multi-user MIMO Systems (다중 사용자 MIMO 시스템을 위한 적응적 결합 프리코딩)

  • Park, Ju Yong;Hanif, Mohammad Abu;Song, Sang Seob;Lee, Moon Ho
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.12
    • /
    • pp.3-11
    • /
    • 2014
  • Multiple antennas can provide huge capacity gains when the transmitter knows the channel state information (CSI). Precoding is a technique that exploits CSI at the transmitter side. In this paper, an adaptive precoding scheme is proposed, called a hybrid multiple-input multiple-output (MIMO) precoding (HMP). HMP is a combination of linear and nonlinear precoding. The number of transmit antennas less than or equal to four is as same as the conventional antenna selection scheme. Therefore, the HMP scheme uses more than four transmit antennas. The good channel means that the channels must be selected to maximize the channel capacity among the given channels, and the rest channels are called bad channel. In HMP scheme, we use the nonlinear precoding in the good channels and the linear precoding in the bad channels. The well-known Tomlinson-Harashima precoding (THP) is considered as nonlinear precoding. The system throughput and MSE (minimum square error) are shown for the performance of HMP scheme compared to the conventional schemes which are BD (block diagonalization), antenna selection and THP.

A Near Optimal Linear Preceding for Multiuser MIMO Throughput Maximization (다중 안테나 다중 사용자 환경에서 최대 전송율에 근접하는 선형 precoding 기법)

  • Jang, Seung-Hun;Yang, Jang-Hoon;Jang, Kyu-Hwan;Kim, Dong-Ku
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.4C
    • /
    • pp.414-423
    • /
    • 2009
  • This paper considers a linear precoding scheme that achieves near optimal sum rate. While the minimum mean square error (MMSE) precoding provides the better MSE performance at all signal-to-noise ratio (SNR) than the zero forcing (ZF) precoding, its sum rate shows superior performance to ZF precoding at low SNR but inferior performance to ZF precoding at high SNR, From this observation, we first propose a near optimal linear precoding scheme in terms of sum rate. The resulting precoding scheme regularizes ZF precoding to maximize the sum rate, resulting in better sum rate performance than both ZF precoding and MMSE precoding at all SNR ranges. To find regularization parameters, we propose a simple algorithm such that locally maximal sum rate is achieved. As a low complexity alternative, we also propose a simple power re-allocation scheme in the conventional regularized channel inversion scheme. Finally, the proposed scheme is tested under the presence of channel estimation error. By simulation, we show that the proposed scheme can maintain the performance gain in the presence of channel estimation error and is robust to the channel estimation error.

Limited Feedback Performance Aanlysis of Regularized Joint Spatial Division and Multiplexing Scheme (정규화된 결합 공간 분할 다중화 기법의 제한된 피드백 환경에서 성능 분석)

  • Song, Changick
    • Journal of IKEEE
    • /
    • v.25 no.3
    • /
    • pp.420-424
    • /
    • 2021
  • The massive MIMO system, which is a core technology of 5G communication systems, has a problem that it is difficult to implement in a frequency division duplex system based on limited channel feedback because a large amount of channel information is required at the transmitting end. In order to solve this problem, the Joint Spatial Division and Multiplexing (JSDM) technique that dramatically reduces the channel information requirement by removing interference between the user groups using channel correlation information that does not change for a long time has been proposed. Recently, a regularized JSDM technique has been proposed to further improve performance by allowing residual interference between the user groups. However, such JSDM-related studies were mainly designed to focus on inter-group interference cancellation, and thus performance analysis was not performed in a more realistic environment assuming limited feedback in the intra-group interference cancellation phase. In this paper, we analyze the performance of the JSDM and regularized JSDM techniques according to the number of groups and users in a limited feedback environment, and through the simulation results, demonstrate that the regularized JSDM technique shows a more remarkable advantage compared to the existing JSDM in a limited feedback environments.