• Title/Summary/Keyword: 다중 벡터 문서 임베딩

Search Result 2, Processing Time 0.017 seconds

Multi-Vector Document Embedding Using Semantic Decomposition of Complex Documents (복합 문서의 의미적 분해를 통한 다중 벡터 문서 임베딩 방법론)

  • Park, Jongin;Kim, Namgyu
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.3
    • /
    • pp.19-41
    • /
    • 2019
  • According to the rapidly increasing demand for text data analysis, research and investment in text mining are being actively conducted not only in academia but also in various industries. Text mining is generally conducted in two steps. In the first step, the text of the collected document is tokenized and structured to convert the original document into a computer-readable form. In the second step, tasks such as document classification, clustering, and topic modeling are conducted according to the purpose of analysis. Until recently, text mining-related studies have been focused on the application of the second steps, such as document classification, clustering, and topic modeling. However, with the discovery that the text structuring process substantially influences the quality of the analysis results, various embedding methods have actively been studied to improve the quality of analysis results by preserving the meaning of words and documents in the process of representing text data as vectors. Unlike structured data, which can be directly applied to a variety of operations and traditional analysis techniques, Unstructured text should be preceded by a structuring task that transforms the original document into a form that the computer can understand before analysis. It is called "Embedding" that arbitrary objects are mapped to a specific dimension space while maintaining algebraic properties for structuring the text data. Recently, attempts have been made to embed not only words but also sentences, paragraphs, and entire documents in various aspects. Particularly, with the demand for analysis of document embedding increases rapidly, many algorithms have been developed to support it. Among them, doc2Vec which extends word2Vec and embeds each document into one vector is most widely used. However, the traditional document embedding method represented by doc2Vec generates a vector for each document using the whole corpus included in the document. This causes a limit that the document vector is affected by not only core words but also miscellaneous words. Additionally, the traditional document embedding schemes usually map each document into a single corresponding vector. Therefore, it is difficult to represent a complex document with multiple subjects into a single vector accurately using the traditional approach. In this paper, we propose a new multi-vector document embedding method to overcome these limitations of the traditional document embedding methods. This study targets documents that explicitly separate body content and keywords. In the case of a document without keywords, this method can be applied after extract keywords through various analysis methods. However, since this is not the core subject of the proposed method, we introduce the process of applying the proposed method to documents that predefine keywords in the text. The proposed method consists of (1) Parsing, (2) Word Embedding, (3) Keyword Vector Extraction, (4) Keyword Clustering, and (5) Multiple-Vector Generation. The specific process is as follows. all text in a document is tokenized and each token is represented as a vector having N-dimensional real value through word embedding. After that, to overcome the limitations of the traditional document embedding method that is affected by not only the core word but also the miscellaneous words, vectors corresponding to the keywords of each document are extracted and make up sets of keyword vector for each document. Next, clustering is conducted on a set of keywords for each document to identify multiple subjects included in the document. Finally, a Multi-vector is generated from vectors of keywords constituting each cluster. The experiments for 3.147 academic papers revealed that the single vector-based traditional approach cannot properly map complex documents because of interference among subjects in each vector. With the proposed multi-vector based method, we ascertained that complex documents can be vectorized more accurately by eliminating the interference among subjects.

Relation Extraction Using Self-attention with Multi Grained Information (다중 정보와 Self-Attention을 이용한 관계 추출)

  • Kim, Jeong-Moo;Lee, Seung-Woo;Char, Jeong-Won
    • Annual Conference on Human and Language Technology
    • /
    • 2019.10a
    • /
    • pp.175-180
    • /
    • 2019
  • 관계 추출은 문서에서 존재하는 트리플(주어, 관계어, 목적어)형식에 해당하는 단어를 추출하는 작업을 뜻한다. 본 논문에서는 멀티헤드 셀프 어텐션을 이용하여 트리플 중 주어나 목적어를 찾는 구조를 제안한다. 한국어 위키피디아와 DBpedia의 관계어를 단어 임베딩을 통해 벡터를 생성하고 입력한다. 초록과 관계어의 어텐션 이후 멀티 헤드 셀프 어텐선 구조를 통해 초록 중 관계어와 관련 있는 단어들의 가중치가 높아 진다. 멀티헤드 셀프 어텐션 과정을 반복하여 주요 단어들의 가중치가 계속해서 높아진다. 이를 입력으로 하여 정답이 될 단어의 시작과 끝을 선택한다. 제안 방법으로 직접 구축한 한국어 관계 추출 데이터셋을 대상으로 F1 0.7981의 성능을 보였다. 제안 방법은 관계어와 같이 단순한 정보만을 이용하고도 초록에서 적절한 정답 단어를 추출할 수 있음을 확인하였다. 관계어의 범위를 확장함으로서 나아가 육하원칙(5W1H)과 같은 이벤트의 추출에도 활용할 수 있을 것이다.

  • PDF