• Title/Summary/Keyword: 다중 모델 훈련

Search Result 63, Processing Time 0.025 seconds

Automatic Text Classification Using Hybrid Multiple Model Schemes (하이브리드 다중 모델 학습 기법을 이용한 자동 문서 분류)

  • 명순희;조형근;김인철
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2002.10d
    • /
    • pp.253-255
    • /
    • 2002
  • 본 논문에서는 다중 모델 기계학습 기법을 이용하여 문서 자동 분류의 성능과 신뢰도를 향상시킬 수 있는 연구와 실험 결과를 기술하였다. 기존의 다중 모텔 기계 학습법들이 훈련 데이터 또는 학습 알고리즘의 편향에 의한 오류를 극복하고 한 것들인데 비해 본 논문에서 제안한 메타 학습을 이용한 하이브리드 다중 모델 방식은 이 두 가지의 오류 원인을 동시에 해소하고자 하였다. 다양한 문서 집합에 대한 실험 결과, 본 연구에서 제안한 하이브리드 다중 모델 학습법이 전반적으로 기존의 일반 다중모델 학습법들에 비해 높은 성능을 보였으며, 다중 모델의 결합 방식으로서 메타 학습이 투표 방식에 비해 효율적인 것으로 나타났다.

  • PDF

Continual Multiagent Reinforcement Learning in Dynamic Environments (동적 환경에서의 지속적인 다중 에이전트 강화 학습)

  • Jung, Kyuyeol;Kim, Incheol
    • Annual Conference of KIPS
    • /
    • 2020.11a
    • /
    • pp.988-991
    • /
    • 2020
  • 다양한 실세계 응용 분야들에서 공동의 목표를 위해 여러 에이전트들이 상호 유기적으로 협력할 수 있는 행동 정책을 배우는 것은 매우 중요하다. 이러한 다중 에이전트 강화 학습(MARL) 환경에서 기존의 연구들은 대부분 중앙-집중형 훈련과 분산형 실행(CTDE) 방식을 사실상 표준 프레임워크로 채택해왔다. 하지만 이러한 다중 에이전트 강화 학습 방식은 훈련 시간 동안에는 경험하지 못한 새로운 환경 변화가 실전 상황에서 끊임없이 발생할 수 있는 동적 환경에서는 효과적으로 대처하기 어렵다. 이러한 동적 환경에 효과적으로 대응하기 위해, 본 논문에서는 새로운 다중 에이전트 강화 학습 체계인 C-COMA를 제안한다. C-COMA는 에이전트들의 훈련 시간과 실행 시간을 따로 나누지 않고, 처음부터 실전 상황을 가정하고 지속적으로 에이전트들의 협력적 행동 정책을 학습해나가는 지속 학습 모델이다. 본 논문에서는 대표적인 실시간 전략게임인 StarcraftII를 토대로 동적 미니게임을 구현하고 이 환경을 이용한 다양한 실험들을 수행함으로써, 제안 모델인 C-COMA의 효과와 우수성을 입증한다.

Application of transfer learning to develop radar-based rainfall prediction model with GAN(Generative Adversarial Network) for multiple dam domains (다중 댐 유역에 대한 강우예측모델 개발을 위한 전이학습 기법의 적용)

  • Choi, Suyeon;Kim, Yeonjoo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.61-61
    • /
    • 2022
  • 최근 머신러닝 기술의 발달에 따라 이를 활용한 레이더 자료기반 강우예측기법이 활발히 개발되고 있다. 기존 머신러닝을 이용한 강우예측모델 개발 관련 연구는 주로 한 지역에 대해 수행되며, 데이터 기반으로 훈련되는 머신러닝 기법의 특성상 개발된 모델이 훈련된 지역에 대해서만 좋은 성능을 보인다는 한계점이 존재한다. 이러한 한계점을 해결하기 위해 사전 훈련된 모델을 이용하여 새로운 데이터에 대해 모델을 훈련하는 전이학습 기법 (transfer learning)을 적용하여 여러 유역에 대한 강우예측모델을 개발하고자 하였다. 본 연구에서는 사전 훈련된 강우예측 모델로 생성적 적대 신경망 기반 기법(Generative Adversarial Network, GAN)을 이용한 미래 강우예측모델을 사용하였다. 해당 모델은 기상청에서 제공된 2014년~2017년 여름의 레이더 이미지 자료를 이용하여 초단기, 단기 강우예측을 수행하도록 학습시켰으며, 2018년 레이더 이미지 자료를 이용한 단기강우예측 모의에서 좋은 성능을 보였다. 본 연구에서는 훈련된 모델을 이용해 새로운 댐 유역(안동댐, 충주댐)에 대한 강우예측모델을 개발하기 위해 여러 전이학습 기법을 적용하고, 그 결과를 비교하였다. 결과를 통해 새로운 데이터로 처음부터 훈련시킨 모델보다 전이학습 기법을 사용하였을 때 좋은 성능을 보이는 것을 확인하였으며, 이를 통해 여러 댐 유역에 대한 모델 개발 시 전이학습 기법이 효율적으로 적용될 수 있음을 확인하였다.

  • PDF

Automatic Text Categorization Using Hybrid Multiple Model Schemes (하이브리드 다중모델 학습기법을 이용한 자동 문서 분류)

  • 명순희;김인철
    • Journal of the Korean Society for information Management
    • /
    • v.19 no.4
    • /
    • pp.35-51
    • /
    • 2002
  • Inductive learning and classification techniques have been employed in various research and applications that organize textual data to solve the problem of information access. In this study, we develop hybrid model combination methods which incorporate the concepts and techniques for multiple modeling algorithms to improve the accuracy of text classification, and conduct experiments to evaluate the performances of proposed schemes. Boosted stacking, one of the extended stacking schemes proposed in this study yields higher accuracy relative to the conventional model combination methods and single classifiers.

Multiple image classification using label mapping (레이블 매핑을 이용한 다중 이미지 분류)

  • Jeon, Seung-Je;Lee, Dong-jun;Lee, DongHwi
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2022.05a
    • /
    • pp.367-369
    • /
    • 2022
  • In this paper, the predicted results were confirmed by label mapping for each class while implementing multi-class image classification to confirm accurate results for images in which the trained model failed classification. A CNN model was constructed and trained using Kaggle's Intel Image Classification dataset, and the mapped label values of multiple classes of images and the values classified by the model were compared by label mapping the images of the test dataset.

  • PDF

Mitigating Mode Collapse using Multiple GANs Training System (모드 붕괴를 완화하기 위한 다중 GANs 훈련 시스템)

  • Joo Yong Shim;Jean Seong Bjorn Choe;Jong-Kook Kim
    • The Transactions of the Korea Information Processing Society
    • /
    • v.13 no.10
    • /
    • pp.497-504
    • /
    • 2024
  • Generative Adversarial Networks (GANs) are typically described as a two-player game between a generator and a discriminator, where the generator aims to produce realistic data, and the discriminator tries to distinguish between real and generated data. However, this setup often leads to mode collapse, where the generator produces limited variations in the data, failing to capture the full range of the target data distribution. This paper proposes a new training system to mitigate the mode collapse problem. Specifically, it extends the traditional two-player game of GANs into a multi-player game and introduces a peer-evaluation method to effectively train multiple GANs. In the peer-evaluation process, the generated samples from each GANs are evaluated by the other players. This provides external feedback, serving as an additional standard that helps GANs recognize mode failure. This cooperative yet competitive training method encourages the generators to explore and capture a broader range of the data distribution, mitigating mode collapse problem. This paper explains the detailed algorithm for peer-evaluation based multi-GANs training and validates the performance through experiments.

Lightweight Key Point Detection Model Based on Multi-Scale Ghost Convolution for YOLOv8 (YOLOv8 을 위한 다중 스케일 Ghost 컨볼루션 기반 경량 키포인트 검출 모델)

  • Zihao Li;Inwhee Joe
    • Annual Conference of KIPS
    • /
    • 2024.05a
    • /
    • pp.604-606
    • /
    • 2024
  • 컴퓨터 비전 응용은 우리 생활에서 중요한 역할을 한다. 현재, 대규모 모델의 등장으로 딥 러닝의 훈련 및 운행 비용이 급격히 상승하고 있다. 자원이 제한된 환경에서는 일부 AI 프로그램을 실행할 수 없게 되므로, 경량화 연구가 필요하다. YOLOv8 은 현재 주요 목표 검출 모델 중 하나이며, 본 논문은 다중 스케일 Ghost 컨볼루션 모듈을 사용하여 구축된 새로운 YOLOv8-pose-msg 키포인트 검출 모델을 제안한다. 다양한 사양에서 새 모델의 매개변수 양은 최소 34% 감소할 수 있으며, 최대 59%까지 감소할 수 있다. 종합적인 검출 성능은 비교적 대규모 데이터셋에서 원래의 수준을 유지할 수 있으며, 소규모 데이터셋에서의 키포인트 검출은 30% 이상 증가할 수 있다. 동시에 최대 25%의 훈련 및 추론 시간을 절약할 수 있다.

Environment Adaptation by Discriminative Noise Adaptive Training Methods (잡음적응 변별학습 방식을 이용한 환경적응)

  • Kang, Byung-Ok;Jung, Ho-Young;Lee, Yun-Keun
    • Annual Conference of KIPS
    • /
    • 2007.05a
    • /
    • pp.397-398
    • /
    • 2007
  • 본 논문에서는 환경변화에 대해 강인하게 동작하는 음성인식 시스템을 위해 잡음적응 훈련과 변별학습 방식을 결합한 형태의 환경적응 방식을 제안한다. 다중환경 훈련과 잡음제거방식을 결합한 형태인 잡음적응 훈련 방식은 음성인식을 위한 MCE (Minimum Classification Error)의 목적과는 거리가 있고, 음성인식 시스템이 사용되는 모든 환경을 반영하는 것은 현실적으로 어렵다는 점에서 한계가 있다. 이에 잡음적응 훈련방식으로 훈련된 기본 음향모델을 목적환경에서 수집한 소량의 데이터를 이용한 변별학습을 통해 환경적응 모델로 변환함으로써 이러한 단점을 보완할 수 있는 잡음 적응 변별학습을 이용한 훈련방식을 제안한다.

C-COMA: A Continual Reinforcement Learning Model for Dynamic Multiagent Environments (C-COMA: 동적 다중 에이전트 환경을 위한 지속적인 강화 학습 모델)

  • Jung, Kyueyeol;Kim, Incheol
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.10 no.4
    • /
    • pp.143-152
    • /
    • 2021
  • It is very important to learn behavioral policies that allow multiple agents to work together organically for common goals in various real-world applications. In this multi-agent reinforcement learning (MARL) environment, most existing studies have adopted centralized training with decentralized execution (CTDE) methods as in effect standard frameworks. However, this multi-agent reinforcement learning method is difficult to effectively cope with in a dynamic environment in which new environmental changes that are not experienced during training time may constantly occur in real life situations. In order to effectively cope with this dynamic environment, this paper proposes a novel multi-agent reinforcement learning system, C-COMA. C-COMA is a continual learning model that assumes actual situations from the beginning and continuously learns the cooperative behavior policies of agents without dividing the training time and execution time of the agents separately. In this paper, we demonstrate the effectiveness and excellence of the proposed model C-COMA by implementing a dynamic mini-game based on Starcraft II, a representative real-time strategy game, and conducting various experiments using this environment.

Construction of Dialog Engagement Model using MovieDic Corpus (MovieDic 말뭉치를 이용한 대화 참여 모델의 구성)

  • Koo, Sangjun;Yu, Hwanjo;Lee, Gary Geunbae
    • 한국어정보학회:학술대회논문집
    • /
    • 2016.10a
    • /
    • pp.249-251
    • /
    • 2016
  • 다중 화자 대화 시스템에서, 시스템의 입장에서 어느 시점에 참여해야하는지를 아는 것은 중요하다. 이러한 참여 모델을 구축함에 있어서 본 연구에서는 다수의 화자가 대화에 참여하는 영화 대본으로 구축된 MovieDic 말뭉치를 사용하였다. 구축에 필요한 자질로써 의문사, 호칭, 명사, 어휘 등을 사용하였고, 훈련 알고리즘으로는 Maximum Entropy Classifier를 사용하였다. 실험 결과 53.34%의 정확도를 기록하였으며, 맥락 자질의 추가로 정확도 개선을 기대할 수 있다.

  • PDF