• Title/Summary/Keyword: 다중 모델 퍼지 예측기

Search Result 6, Processing Time 0.028 seconds

Fuzzy System Optimization Based on RCGKA and its Application to Time Series Prediction (RCGKA기반 퍼지 시스템 최적화 및 시계열 예측 응용)

  • Bang, Young-Keun;Shim, Jae-Sun;Park, Jong-Kuk;Lee, Chul-Heui
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1644_1645
    • /
    • 2009
  • 본 논문은 비정상 시계열 예측을 위한 다중모델 퍼지 시스템과, 제안된 시스템의 최적화를 위한 유전 알고리즘의 응용을 다룬다. 일반적으로, 퍼지 예측시스템의 성능은 비선형 데이터가 가지고 있는 다양한 패턴이나 법칙성, 경향 등을 잘 분석하고 시스템에 반영함으로써 개선될 수 있다. 따라서, 본 논문은 원형 시계열의 특성을 보다 잘 반영할 수 있는 그들의 차분데이터를 시스템에 적용하며, 생성 가능한 차분 데이터들 중 원형 시계열의 특징에 가까운 일부를 추출하여 다중모델 퍼지 예측 시스템을 구현함으로써 다양한 원형시계열의 패턴이나 법칙성 등이 고려될 수 있도록 하였다. 다중 모델 퍼지 시스템의 각각의 예측기에는 구조가 간단한 k-means 클러스터링 기법을 적용하여 구현의 용이성을 꽤하였으며, 성능평가를 통해 선택된 최종 예측기는 RCGKA(real-coded genetic k-means clustering algorithms)를 통해 더욱 최적화된 규칙기반을 가지게 함으로써 예측성능이 개선될 수 있도록 하였다. 본 논문에 사용된 최적화 기법인 RCGKA에는 또한 성능이 우수한 다양한 유전연산자를 도입하여 더욱 예측기 성능이 강화될 수 있도록 하였으며, 시뮬레이션을 통해 제안된 예측시스템의 효용성을 증명하였다.

  • PDF

Multiple Model Fuzzy Prediction Systems with Adaptive Model Selection Based on Rough Sets and its Application to Time Series Forecasting (러프 집합 기반 적응 모델 선택을 갖는 다중 모델 퍼지 예측 시스템 구현과 시계열 예측 응용)

  • Bang, Young-Keun;Lee, Chul-Heui
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.19 no.1
    • /
    • pp.25-33
    • /
    • 2009
  • Recently, the TS fuzzy models that include the linear equations in the consequent part are widely used for time series forecasting, and the prediction performance of them is somewhat dependent on the characteristics of time series such as stationariness. Thus, a new prediction method is suggested in this paper which is especially effective to nonstationary time series prediction. First, data preprocessing is introduced to extract the patterns and regularities of time series well, and then multiple model TS fuzzy predictors are constructed. Next, an appropriate model is chosen for each input data by an adaptive model selection mechanism based on rough sets, and the prediction is going. Finally, the error compensation procedure is added to improve the performance by decreasing the prediction error. Computer simulations are performed on typical cases to verify the effectiveness of the proposed method. It may be very useful for the prediction of time series with uncertainty and/or nonstationariness because it handles and reflects better the characteristics of data.

Multiple Model Prediction System Based on Optimal TS Fuzzy Model and Its Applications to Time Series Forecasting (최적 TS 퍼지 모델 기반 다중 모델 예측 시스템의 구현과 시계열 예측 응용)

  • Bang, Young-Keun;Lee, Chul-Heui
    • Journal of Industrial Technology
    • /
    • v.28 no.B
    • /
    • pp.101-109
    • /
    • 2008
  • In general, non-stationary or chaos time series forecasting is very difficult since there exists a drift and/or nonlinearities in them. To overcome this situation, we suggest a new prediction method based on multiple model TS fuzzy predictors combined with preprocessing of time series data, where, instead of time series data, the differences of them are applied to predictors as input. In preprocessing procedure, the candidates of optimal difference interval are determined by using con-elation analysis and corresponding difference data are generated. And then, for each of them, TS fuzzy predictor is constructed by using k-means clustering algorithm and least squares method. Finally, the best predictor which minimizes the performance index is selected and it works on hereafter for prediction. Computer simulation is performed to show the effectiveness and usefulness of our method.

  • PDF

Fuzzy Time Series Prediction with Data Preprocessing and Error Compensation Based on Correlation Analysis (상관해석을 기반으로 한 데이터의 전처리와 오차 보정을 갖는 퍼지 시계열 예측)

  • Bang, Young-Keun;Lee, Chul-Heui
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.1773-1774
    • /
    • 2008
  • 유동적 비선형 특성을 보이는 혼돈 시계열에 대한 정확한 예측을 위해 예측 입력으로 차분 데이터를 사용하면 보다 나은 예측이 가능하다. 그러므로 본 논문에서는 상관 해석에 기반한 데이터의 전처리를 통해 적절한 최적 차분 간격 후보군을 선정하고 이들 각각에 대한 TS 퍼지 예측기로 다중 모델을 구성하여 성능 지수 평가에 의해 최적의 퍼지 예측기를 선택하여 예측을 수행하도록 하였으며, TS 퍼지 규칙 후건부에서 결정되는 예측 출력에 상관 해석에 기반한 오차 보정 메거니즘을 추가함으로써 예측 성능을 더욱 향상시킬 수 있도록 하였다.

  • PDF

Web Mining Using Fuzzy Integration of Multiple Structure Adaptive Self-Organizing Maps (다중 구조적응 자기구성지도의 퍼지결합을 이용한 웹 마이닝)

  • 김경중;조성배
    • Journal of KIISE:Software and Applications
    • /
    • v.31 no.1
    • /
    • pp.61-70
    • /
    • 2004
  • It is difficult to find an appropriate web site because exponentially growing web contains millions of web documents. Personalization of web search can be realized by recommending proper web sites using user profile but more efficient method is needed for estimating preference because user's evaluation on web contents presents many aspects of his characteristics. As user profile has a property of non-linearity, estimation by classifier is needed and combination of classifiers is necessary to anticipate diverse properties. Structure adaptive self-organizing map (SASOM) that is suitable for Pattern classification and visualization is an enhanced model of SOM and might be useful for web mining. Fuzzy integral is a combination method using classifiers' relevance that is defined subjectively. In this paper, estimation of user profile is conducted by using ensemble of SASOM's teamed independently based on fuzzy integral and evaluated by Syskill & Webert UCI benchmark data. Experimental results show that the proposed method performs better than previous naive Bayes classifier as well as voting of SASOM's.

Design of Multiple Model Fuzzy Predictors using Data Preprocessing and its Application (데이터 전처리를 이용한 다중 모델 퍼지 예측기의 설계 및 응용)

  • Bang, Young-Keun;Lee, Chul-Heui
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.1
    • /
    • pp.173-180
    • /
    • 2009
  • It is difficult to predict non-stationary or chaotic time series which includes the drift and/or the non-linearity as well as uncertainty. To solve it, we propose an effective prediction method which adopts data preprocessing and multiple model TS fuzzy predictors combined with model selection mechanism. In data preprocessing procedure, the candidates of the optimal difference interval are determined based on the correlation analysis, and corresponding difference data sets are generated in order to use them as predictor input instead of the original ones because the difference data can stabilize the statistical characteristics of those time series and better reveals their implicit properties. Then, TS fuzzy predictors are constructed for multiple model bank, where k-means clustering algorithm is used for fuzzy partition of input space, and the least squares method is applied to parameter identification of fuzzy rules. Among the predictors in the model bank, the one which best minimizes the performance index is selected, and it is used for prediction thereafter. Finally, the error compensation procedure based on correlation analysis is added to improve the prediction accuracy. Some computer simulations are performed to verify the effectiveness of the proposed method.