• Title/Summary/Keyword: 다중퍼셉트론

Search Result 40, Processing Time 0.021 seconds

Classification of Remote Sensing Data using Random Selection of Training Data and Multiple Classifiers (훈련 자료의 임의 선택과 다중 분류자를 이용한 원격탐사 자료의 분류)

  • Park, No-Wook;Yoo, Hee Young;Kim, Yihyun;Hong, Suk-Young
    • Korean Journal of Remote Sensing
    • /
    • v.28 no.5
    • /
    • pp.489-499
    • /
    • 2012
  • In this paper, a classifier ensemble framework for remote sensing data classification is presented that combines classification results generated from both different training sets and different classifiers. A core part of the presented framework is to increase a diversity between classification results by using both different training sets and classifiers to improve classification accuracy. First, different training sets that have different sampling densities are generated and used as inputs for supervised classification using different classifiers that show different discrimination capabilities. Then several preliminary classification results are combined via a majority voting scheme to generate a final classification result. A case study of land-cover classification using multi-temporal ENVISAT ASAR data sets is carried out to illustrate the potential of the presented classification framework. In the case study, nine classification results were combined that were generated by using three different training sets and three different classifiers including maximum likelihood classifier, multi-layer perceptron classifier, and support vector machine. The case study results showed that complementary information on the discrimination of land-cover classes of interest would be extracted within the proposed framework and the best classification accuracy was obtained. When comparing different combinations, to combine any classification results where the diversity of the classifiers is not great didn't show an improvement of classification accuracy. Thus, it is recommended to ensure the greater diversity between classifiers in the design of multiple classifier systems.

Performance Comparison for Radar Target Classification of Monostatic RCS and Bistatic RCS (모노스태틱 RCS와 바이스태틱 RCS의 표적 구분 성능 분석)

  • Lee, Sung-Jun;Choi, In-Sik
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.12
    • /
    • pp.1460-1466
    • /
    • 2010
  • In this paper, we analyzed the performance of radar target classification using the monostatic and bistatic radar cross section(RCS) for four different wire targets. Short time Fourier transform(STFT) and continuous wavelet transform (CWT) were used for feature extraction from the monostatic RCS and the bistatic RCS of each target, and a multi-layered perceptron(MLP) neural network was used as a classifier. Results show that CWT yields better performance than STFT for both the monostatic RCS and the bistatic RCS. And, when STFT was used, the performance of the bistatic RCS was slightly better than that of the monostatic RCS. However, when CWT was used, the performance of the monostatic RCS was slightly better than that of the bistatic RCS. Resultingly, it is proven that bistatic RCS is a good cadndidate for application to radar target classification in combination with a monostatic RCS.

Realization of home appliance classification system using deep learning (딥러닝을 이용한 가전제품 분류 시스템 구현)

  • Son, Chang-Woo;Lee, Sang-Bae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.9
    • /
    • pp.1718-1724
    • /
    • 2017
  • Recently, Smart plugs for real time monitoring of household appliances based on IoT(Internet of Things) have been activated. Through this, consumers are able to save energy by monitoring real-time energy consumption at all times, and reduce power consumption through alarm function based on consumer setting. In this paper, we measure the alternating current from a wall power outlet for real-time monitoring. At this time, the current pattern for each household appliance was classified and it was experimented with deep learning to determine which product works. As a result, we used a cross validation method and a bootstrap verification method in order to the classification performance according to the type of appliances. Also, it is confirmed that the cost function and the learning success rate are the same as the train data and test data.

Adult Image Detection Using Skin Color and Multiple Features (피부색상과 복합 특징을 이용한 유해영상 인식)

  • Jang, Seok-Woo;Choi, Hyung-Il;Kim, Gye-Young
    • Journal of the Korea Society of Computer and Information
    • /
    • v.15 no.12
    • /
    • pp.27-35
    • /
    • 2010
  • Extracting skin color is significant in adult image detection. However, conventional methods still have essential problems in extracting skin color. That is, colors of human skins are basically not the same because of individual skin difference or difference races. Moreover, skin regions of images may not have identical color due to makeup, different cameras used, etc. Therefore, most of the existing methods use predefined skin color models. To resolve these problems, in this paper, we propose a new adult image detection method that robustly segments skin areas with an input image-adapted skin color distribution model, and verifies if the segmented skin regions contain naked bodies by fusing several representative features through a neural network scheme. Experimental results show that our method outperforms others through various experiments. We expect that the suggested method will be useful in many applications such as face detection and objectionable image filtering.

Variation for Mental Health of Children of Marginalized Classes through Exercise Therapy using Deep Learning (딥러닝을 이용한 소외계층 아동의 스포츠 재활치료를 통한 정신 건강에 대한 변화)

  • Kim, Myung-Mi
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.15 no.4
    • /
    • pp.725-732
    • /
    • 2020
  • This paper uses variables following as : to follow me well(0-9), it takes a lot of time to make a decision (0-9), lethargy(0-9) during physical activity in the exercise learning program of the children in the marginalized class. This paper classifies 'gender', 'physical education classroom', and 'upper, middle and lower' of age, and observe changes in ego-resiliency and self-control through sports rehabilitation therapy to find out changes in mental health. To achieve this, the data acquired was merged and the characteristics of large and small numbers were removed using the Label encoder and One-hot encoding. Then, to evaluate the performance by applying each algorithm of MLP, SVM, Dicesion tree, RNN, and LSTM, the train and test data were divided by 75% and 25%, and then the algorithm was learned with train data and the accuracy of the algorithm was measured with the Test data. As a result of the measurement, LSTM was the most effective in sex, MLP and LSTM in physical education classroom, and SVM was the most effective in age.

The usefulness of the depth images in image-based speech synthesis (영상 기반 음성합성에서 심도 영상의 유용성)

  • Ki-Seung Lee
    • The Journal of the Acoustical Society of Korea
    • /
    • v.42 no.1
    • /
    • pp.67-74
    • /
    • 2023
  • The images acquired from the speaker's mouth region revealed the unique patterns according to the corresponding voices. By using this principle, the several methods were proposed in which speech signals were recognized or synthesized from the images acquired at the speaker's lower face. In this study, an image-based speech synthesis method was proposed in which the depth images were cooperatively used. Since depth images yielded depth information that cannot be acquired from optical image, it can be used for the purpose of supplementing flat optical images. In this paper, the usefulness of depth images from the perspective of speech synthesis was evaluated. The validation experiment was carried out on 60 Korean isolated words, it was confirmed that the performance in terms of both subjective and objective evaluation was comparable to the optical image-based method. When the two images were used in combination, performance improvements were observed compared with when each image was used alone.

Masking Exponential-Based Neural Network via Approximated Activation Function (활성화 함수 근사를 통한 지수함수 기반 신경망 마스킹 기법)

  • Joonsup Kim;GyuSang Kim;Dongjun Park;Sujin Park;HeeSeok Kim;Seokhie Hong
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.33 no.5
    • /
    • pp.761-773
    • /
    • 2023
  • This paper proposes a method to increase the power-analysis resistance of the neural network model's feedforward process by replacing the exponential-based activation function, used in the deep-learning field, with an approximated function especially at the multi-layer perceptron model. Due to its nature, the feedforward process of neural networks calculates secret weight and bias, which already trained, so it has risk of exposure of internal information by side-channel attacks. However, various functions are used as the activation function in neural network, so it's difficult to apply conventional side-channel countermeasure techniques, such as masking, to activation function(especially, to exponential-based activation functions). Therefore, this paper shows that even if an exponential-based activation function is replaced with approximated function of simple form, there is no fatal performance degradation of the model, and than suggests a power-analysis resistant feedforward neural network with exponential-based activation function, by masking approximated function and whole network.

Directional Feature Extraction of Handwritten Numerals using Local min/max Operations (Local min/max 연산을 이용한 필기체 숫자의 방향특징 추출)

  • Jung, Soon-Won;Park, Joong-Jo
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.10 no.1
    • /
    • pp.7-12
    • /
    • 2009
  • In this paper, we propose a directional feature extraction method for off-line handwritten numerals by using the morphological operations. Direction features are obtained from four directional line images, each of which contains horizontal, vertical, right-diagonal and left-diagonal lines in entire numeral lines. Conventional method for extracting directional features uses Kirsch masks which generate edge-shaped double line images for each direction, whereas our method uses directional erosion operations and generate single line images for each direction. To apply these directional erosion operations to the numeral image, preprocessing steps such as thinning and dilation are required, but resultant directional lines are more similar to numeral lines themselves. Our four [$4{\times}4$] directional features of a numeral are obtained from four directional line images through a zoning method. For obtaining the higher recognition rates of the handwrittern numerals, we use the multiple feature which is comprised of our proposed feature and the conventional features of a kirsch directional feature and a concavity feature. For recognition test with given features, we use a multi-layer perceptron neural network classifier which is trained with the back propagation algorithm. Through the experiments with the CENPARMI numeral database of Concordia University, we have achieved a recognition rate of 98.35%.

  • PDF

An Analysis of Influence on the Selection of R&D Project by Evaluation Index for National Land Transport R&D Project - Focusing on the Technology Commercialization Support Project - (국토교통연구개발사업 평가지표별 연구개발과제 선정에 대한 영향력 분석 - 국토교통기술사업화지원 사업을 중심으로 -)

  • Shim, Hyung-Wook
    • Journal of Industrial Convergence
    • /
    • v.20 no.2
    • /
    • pp.1-9
    • /
    • 2022
  • As the need for improvement of transparency and fairness in the selection of national R&D projects has been continuously raised, we analyzed the impact on the evaluation selection results by evaluation indexes for The land transportation technology commercialization support project and searched for ways to improve indexes using the analysis results. As for the research data, it were applied as selection results of new R&D projects and evaluation indexes in two fields(SME innovation and start-up) in 2021. Logistic regression analysis is used for the influence of each evaluation indexes on the evaluation result, and for the regression model, evaluation indexes with low influence are removed in advance through artificial neural network multiple perceptron analysis to improve the reliability of the analysis results. As a result of the analysis, in the field of SME innovation, the influence of the evaluation index on the workforce planning was the lowest and the influence of the appropriateness of commercialization promotion plan was the highest. In the start-up field, the influence of the evaluation indexes for technology development suitability, marketability, and suitability for carrying out the project were estimated to be similar to each other, and the influence of the technology evaluation index was found to be the lowest. The analysis results of this thesis suggest the need for continuous improvement of selection and evaluation indexes, and by using the analysis results to select a fair R&D institution according to the selection of appropriate indexes, it will be possible to contribute to deriving excellent research results and fostering excellent companies in the field of land transportation.

Card Transaction Data-based Deep Tourism Recommendation Study (카드 데이터 기반 심층 관광 추천 연구)

  • Hong, Minsung;Kim, Taekyung;Chung, Namho
    • Knowledge Management Research
    • /
    • v.23 no.2
    • /
    • pp.277-299
    • /
    • 2022
  • The massive card transaction data generated in the tourism industry has become an important resource that implies tourist consumption behaviors and patterns. Based on the transaction data, developing a smart service system becomes one of major goals in both tourism businesses and knowledge management system developer communities. However, the lack of rating scores, which is the basis of traditional recommendation techniques, makes it hard for system designers to evaluate a learning process. In addition, other auxiliary factors such as temporal, spatial, and demographic information are needed to increase the performance of a recommendation system; but, gathering those are not easy in the card transaction context. In this paper, we introduce CTDDTR, a novel approach using card transaction data to recommend tourism services. It consists of two main components: i) Temporal preference Embedding (TE) represents tourist groups and services into vectors through Doc2Vec. And ii) Deep tourism Recommendation (DR) integrates the vectors and the auxiliary factors from a tourism RDF (resource description framework) through MLP (multi-layer perceptron) to provide services to tourist groups. In addition, we adopt RFM analysis from the field of knowledge management to generate explicit feedback (i.e., rating scores) used in the DR part. To evaluate CTDDTR, the card transactions data that happened over eight years on Jeju island is used. Experimental results demonstrate that the proposed method is more positive in effectiveness and efficacies.