• 제목/요약/키워드: 다중특징

검색결과 1,192건 처리시간 0.033초

퍼지 융합을 이용한 다중생체인식 시스템 구현 (Multi-Modal Recognition System Using the Fuzzy Fusion)

  • 양동화;김형민;고현주;전명근
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2004년도 춘계학술발표대회
    • /
    • pp.355-358
    • /
    • 2004
  • 본 논문에서는 사람의 얼굴과 지문을 이용하여 실시간 다중 생체인식 시스템 구현을 제안하였다. 얼굴인식에서는 이미지의 크기를 축소하기 위해 Wavelet Transform을 이용하였으며, 특징 값을 찾아내기 위한 방법으로는 얼굴인식에서 많이 사용되는 LDA(Linear Discriminant Analysis)를 이용하였다. 또한, 지문인식에서는 지문의 중심점을 찾아 가버 변환을 하고, 이로부터 섹터별 변량을 특징 값으로 사용하였으며, 인식 성능을 향상시킬 수 있는 상관도가 높은 지문 3개를 기준 데이터로 등록하였다. 마지막 단계로 두 가지의 생체정보를 모두 사용할 수 있도록 퍼지를 이용하여 얼굴인식의 결과와 지문인식의 결과를 융합하였으며, 단일 생체정보를 이용했을 때의 단점을 다중 생체인식 시스템을 구현함으로서 우수한 성능을 보이는 시스템을 구현하였다.

  • PDF

다중 작업 학습의 단계적 특징을 활용한 한국어 속성 기반 감성 분석에서의 대상 추출 (Target extraction in Korean aspect-based sentiment analysis using stepwise feature of multi-task learning model)

  • 박호민;김재훈
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2022년도 제34회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.630-633
    • /
    • 2022
  • 속성기반 감성 분석은 텍스트 내에 존재하는 속성에 대해 세분화된 감성 분석을 수행하는 과제를 말한다. 세분화된 감성분석을 정확하게 수행하기 위해서는 텍스트에 존재하는 감성 표현과 그것이 수식하는 대상에 대한 정보가 반드시 필요하다. 그리고 순서대로 두 가지 정보는 이후 정보를 텍스트에서 추출하기 위해 중요한 단서가 된다. 따라서 본 논문에서는 KorBERT와 Bi-LSTM을 이용한 단계적 특징을 활용한 다중 작업 학습 모델을 사용하여 한국어 감성 분석 말뭉치의 감성 표현과 대상을 추출하는 작업을 수행하였다. 제안한 모델을 한국어 감성 분석 말뭉치로 학습 및 평가한 결과, 감성 표현 추출 작업의 출력을 추가적인 특성으로 전달하여 대상 추출 작업의 성능을 향상시킬 수 있음을 보였다.

  • PDF

문서의 의미특징을 이용한 주제 기반의 다중문서 요약 (Topic-Based Multi-Document Summarization using Semantic Features of Documents)

  • 박선;안동언;김철원
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2009년도 추계학술발표대회
    • /
    • pp.715-716
    • /
    • 2009
  • 인터넷의 발전은 대량의 정보를 양산하였고, 이러한 대량의 정보 집합 내에서는 비슷한 정보가 재활용 되거나 반복되는 정보중복문제를 가지고 있다. 중복되는 정보들로부터 사용자에게 원하는 정보를 신속히 검색할 수 있도록 하는 정보 요약에 대한 필요성은 점차 증가하고 있다. 본 논문은 비음수 행렬 인수분해(NMF, non-negative matrix factorization)에 의한 문서의 의미특징을 이용하여 주제기반의 다중문서를 요약하는 새로운 방법을 제안한다. 본 논문에서는 다중문서가 포함하고 있는 문서들 간의 고유구조를 문서요약에 이용하여서 요약의 질을 높일 수 있고, 주제와 문장 간의 유사성과 다양성 고려하여서 쉽게 과잉정보를 제거하여 문장을 요약할 수 있는 장점을 갖는다.

다중 융합 네트워크 기반 이동 객체 행동 인식 (Behavior Recognition of Moving Object based on Multi-Fusion Network)

  • 김진아;문남미
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2022년도 춘계학술발표대회
    • /
    • pp.641-642
    • /
    • 2022
  • 단일 데이터로부터의 이동 객체에 대한 행동 인식 연구는 데이터 수집 과정에서 발생하는 노이즈의 영향을 크게 받는다. 본 논문은 영상 데이터와 센서 데이터를 이용하여 다중 융합 네트워크 기반 이동 객체 행동 인식 방법을 제안한다. 영상으로부터 객체가 감지된 영역의 추출과 센서 데이터의 이상치 제거 및 결측치 보간을 통해 전처리된 데이터들을 융합하여 시퀀스를 생성한다. 생성된 시퀀스는 CNN(Convolutional Neural Networks)과 LSTM(Long Short Term Memory)기반 다중 융합 네트워크 모델을 통해 시계열에 따른 행동 특징들을 추출하고, 깊은 FC(Fully Connected) 계층을 통해 특징들을 융합하여 행동을 예측한다. 본 연구에서 제시된 방법은 사람을 포함한 동물, 로봇 등의 다양한 객체에 적용될 수 있다.

다중회귀분석을 이용한 3축 가속도 센서기반 활동량 추정 방법 (Calorie Burn Estimation Algorithm from a Accelerometer using Multiple Regression Analysis)

  • 최선탁;이규필;김준호;조위덕
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2016년도 춘계학술발표대회
    • /
    • pp.953-955
    • /
    • 2016
  • 본 논문은 다중 회귀 분석을 이용하여 3축 가속도센서기반의 활동량을 추정하는 방법을 제안한다. 본 연구를 위해 총 59명의 피 실험자가 자체 제작한 활동량계를 착용한 뒤 트레드밀에서 일정한 속도로 걷는/뛰는 동작을 수행한 신호를 수집하였다. 수집한 3축 가속도 신호의 에너지 값에서 사전에 정의한 특징들을 산출한다. 그 다음 각 특징별로 선형, 지수, 로지스틱 회귀 분석을 적용하여 적합도가 높은 특징을 선정한다. 마지막으로 산출된 회귀식들을 사용하여 다중 회귀 분석 방법으로 활동량을 추정한다. 호흡가스 대사 분석기(K4B2)를 착용한 뒤 동일한 방법으로 실험을 수행 하고 제안한 방법과 정확도를 비교한 결과 제안한 방법의 정확도는 86.38 %로 산출되었다. 이는 기존의 Kim 외 3인의 연구결과[1]보다 2.70 %, Actical의 정확도보다 4.31 % 높은 수치이다.

비음수 행렬 분해와 K-means를 이용한 주제기반의 다중문서요약 (Topic-based Multi-document Summarization Using Non-negative Matrix Factorization and K-means)

  • 박선;이주홍
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제35권4호
    • /
    • pp.255-264
    • /
    • 2008
  • 본 논문은 K-means과 비음수 행렬 분해(NMF)를 이용하여 주제기반의 다중문서를 요약하는 새로운 방법을 제안하였다. 제안방법은 비음수 행렬 분해를 이용하여 가중치가 부여된 용어-문장 행렬을 희소(Sparse)한 비음수 의미특징 행렬과 비음수 변수 행렬로 분해함으로써 직관적으로 이해할 수 있는 형태의 의미적 특징을 추출할 수 있고, 주제와 의미특징간의 유사도에 가중치를 부여하여 유사도는 높으나 실제 의미 없는 문장이 추출되는 것을 막는다. 또한 K-means 군집을 이용하여 문장에 포함된 노이즈를 제거함으로써 문서의 의미가 요약에 편향되게 반영하는 것을 피할 수 있고, 추출된 문장에 부여된 순위순서대로 정렬하여 보여 줌으로써 응집성을 높인다. 실험 결과 제안방법이 다른 방법에 비하여 좋은 성능을 보인다.

다중 생체인식 시스템에 적합한 워터마킹 알고리즘 (An Watermarking Algorithm for Multimodal Biometric Systems)

  • 문대성;정승환;김태해;정용화;문기영
    • 정보보호학회논문지
    • /
    • 제15권4호
    • /
    • pp.93-100
    • /
    • 2005
  • 본 논문에서는 원격 생체인식 시스템에서 생체데이터의 안전한 전송을 위한 워터마킹 기법을 제안하며, 워터마크의 삽입으로 인한 인식 성능의 상관관계를 비교한다. 특히, 원격 생체인식 시스템은 사용자의 얼굴과 지문 정보를 동시에 사용하는 다중 생체인식 시스템으로 가정한다. 다중 생체인식 시스템에 워터마킹 기법을 적용하기 위하여 우선 두 가지 가능한 시나리오를 고려한다. 첫 번째 시나리오는 얼굴의 특징 정보를 지문 영상에 워터마크로 삽입하며, 반대로 두 번째 시나리오는 지문의 특징 정보를 얼굴 영상에 삽입한다. 실험에 의해 얼굴 영상에 지문 특징정보를 워터마크로 삽입하는 것이 얼굴 및 지문인식 성능의 저하가 거의 발생하지 않음을 확인하였다.

정준상관분석을 이용한 수중표적 분석 (Underwater Target Analysis Using Canonical Correlation Analysis)

  • 석종원;김태환;배건성
    • 한국정보통신학회논문지
    • /
    • 제16권9호
    • /
    • pp.1878-1883
    • /
    • 2012
  • 일반적으로 수중표적 인식에서는 표적의 형상/재질에 따른 수신 표적신호의 공간적인 정보를 특징인자로 추출하여 식별하고자 하는 특징을 추출하였다. 또한, 표적신호의 수신 위치에 덜 민감한 특징파라미터 추출을 위해 다양한 신호처리 기법을 적용하는 연구가 수행되어 왔다. 본 논문에서는 표적신호의 수신위치에 상대적으로 민감하지 않은 정준상관분석(Canonical correlation Analysis; CCA)을 사용하여 합성된 수중물체의 특징을 분석하였다. 다중각도 환경에서 특징추출을 위해 정준산관분석기법이 적용되었으며, 각각 다른 각도에서 수중물체에 반사되어 되돌아오는 연속적인 두개의 소나신호를 대상으로 정준상관분석을 수행하여 두 신호의 상관성을 분석하였다.

다중 바이오 인증에서 특징 융합과 결정 융합의 결합 (Combining Feature Fusion and Decision Fusion in Multimodal Biometric Authentication)

  • 이경희
    • 정보보호학회논문지
    • /
    • 제20권5호
    • /
    • pp.133-138
    • /
    • 2010
  • 본 논문은 얼굴과 음성 정보를 사용한 다중 바이오 인증에서, 특정 단계의 융합과 결정 단계의 융합을 동시에 수행하는 다단계 융합 방법을 제안한다. 얼굴과 음성 특징을 1차 융합한 얼굴 음성 융합특징에 대해 Support Vector Machines(SVM)을 생성한 후, 이 융합특징 SVM 인증기의 결정과 얼굴 SVM 인증기의 결정, 음성 SVM 인증기의 결정들을 다시 2차 융합하여 최종 인증 여부를 결정한다. XM2VTS 멀티모달 데이터베이스를 사용하여 특징 단계 융합, 결정 단계 융합, 다단계 융합 인증을 비교 실험한 결과, 제안한 다단계 융합에 의한 인증이 가장 우수한 성능을 보였다.

다중 스레드를 이용한 실시간 동판 검사 시스템 (A Real-time Copper Foil Inspection System using Multi-thread)

  • 이재광;최동혁
    • 한국정보과학회논문지:컴퓨팅의 실제 및 레터
    • /
    • 제10권6호
    • /
    • pp.499-506
    • /
    • 2004
  • 제안된 동판 표면 검사 시스템은 PC-기반으로 다중 스레드 기법과 다중 CPU를 이용해 동판 표면의 결함을 실시간으로 검사하는 시스템이다. 초고속 라인 스캔 카메라로 영상 취득 보드에 영상을 실시간으로 취득하여 처리할 때, 더블 버퍼링 방법으로 입출력과 처리가 동시에 수행되어 처리 속도를 높인다. 다중 스레드 기법에서는 시스템 자원 활용과 다중 스레드로 CPU의 사용을 최대화하여 실시간 처리하며, 다중 스레드 구조로도 실시간 처리가 어려운 경우에는 다중 CPU를 사용하여 이를 해결한다. 또한 동판 표면 영상에서 결함 검출하여 분류할 때, 실시간 처리를 만족시키기 위해서 결함영상의 공분산 행렬의 고유치 비율, 명암차 등의 연산으로 분류할 수 있는 방법을 제시한다. 결함의 검출은 조명 불균형에 대한 보상 처리가 적용된 다음 임계치에 의해 검출된다. 검출된 결함은 제안된 분류 방법으로 특징을 분석한 뒤 결함의 형태를 분류한다. 특징은 결함 너비와 고유치 비율, 명암차 등이 사용되었다. 제시된 방법을 검증하기 위해서 총 141개의 결함을 분류하는 실험이 진행되었고, 결과로는 89.4% 성공률을 보였다.